Determination of radioprotective and genotoxic properties of sulfamide derivatives
dc.authorid | Karabulut, Abdulhalik/0000-0003-2290-9007 | |
dc.authorid | Aygun, Bunyamin/0000-0002-9384-1540 | |
dc.authorid | Goksu, Suleyman/0000-0003-1280-3954 | |
dc.authorid | ALIM, Bunyamin/0000-0002-4143-9787 | |
dc.authorid | Gulluce, Medine/0000-0002-5957-8259 | |
dc.contributor.author | Aygun, Bunyamin | |
dc.contributor.author | Alaylar, Burak | |
dc.contributor.author | Akincioglu, Akin | |
dc.contributor.author | Alim, Bunyamin | |
dc.contributor.author | Kocaman, Ebu Talip | |
dc.contributor.author | Karadayi, Mehmet | |
dc.contributor.author | Abu Al-Sayyed, Mohammed Ibrahim | |
dc.date.accessioned | 2024-10-04T18:49:27Z | |
dc.date.available | 2024-10-04T18:49:27Z | |
dc.date.issued | 2021 | |
dc.department | Bayburt Üniversitesi | en_US |
dc.description.abstract | Some potential drug active substances with the ability to reduce the effects of radiation on human tissues and cells were investigated. For this purpose, eight different types of sulfamide derivatives were synthesized and nuclear radiation protection parameters were determined. Neutron radiation reduction parameters such as the half-value layer effective removal cross-sections, mean free path, and the number of particles passing through the sample were determined with GEANT4 code. Additionally, the gamma radiation attenuation parameters of the materials examined were determined using Phy-X/PSD software in the energy area of 0.015-15 MeV. These parameters are the half-value layer, mass attenuation coefficient, mean free path, exposure buildup factor and effective atomic number. Neutron radiation absorption experiments were applied using an Am-241-Be fast neutron source. All results obtained for neutron radiation were compared with paraffin and water. It has been found that the ability of sulfamide derivatives to absorb these radiations is superior to reference materials. To determine whether these derivatives could have adverse effects on human health, their genotoxic potential was determined using the Ames/Salmonella bacterial reversion test. The results showed that these derivatives can be considered genotoxically safe in tests at concentrations up to 5 mM. Thus, it is suggested that the derivative materials examined in this study can be used as active substances for a drug to be made for protection against both neutron and gamma radiation. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK) [112T881]; Ataturk University | en_US |
dc.description.sponsorship | The authors are indebted to the Scientific and Technological Research Council of Turkey (TUBITAK, Grant No. 112T881) and Ataturk University for their financial support of this work. | en_US |
dc.identifier.doi | 10.1515/ract-2021-1088 | |
dc.identifier.endpage | 904 | en_US |
dc.identifier.issn | 0033-8230 | |
dc.identifier.issn | 2193-3405 | |
dc.identifier.issue | 12 | en_US |
dc.identifier.scopus | 2-s2.0-85118487859 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 891 | en_US |
dc.identifier.uri | https://doi.org/10.1515/ract-2021-1088 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12403/3159 | |
dc.identifier.volume | 109 | en_US |
dc.identifier.wos | WOS:000744642300003 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Walter De Gruyter Gmbh | en_US |
dc.relation.ispartof | Radiochimica Acta | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Ames test | en_US |
dc.subject | gamma | en_US |
dc.subject | neutron | en_US |
dc.subject | sulfamide | en_US |
dc.subject | sulfamoyl carbamate | en_US |
dc.title | Determination of radioprotective and genotoxic properties of sulfamide derivatives | en_US |
dc.type | Article | en_US |