Magnetic Force Performance of Hybrid Multisurface HTS Maglev System With Auxiliary Onboard PMs

dc.authoridABDIOGLU, MURAT/0000-0002-5497-0817
dc.authoridMollahasanoglu, Hakki/0000-0001-6233-9198
dc.authoridOzturk, Kemal/0000-0002-8847-1880
dc.contributor.authorOzturk, U. Kemal
dc.contributor.authorAbdioglu, Murat
dc.contributor.authorMollahasanoglu, Hakki
dc.date.accessioned2024-10-04T18:51:23Z
dc.date.available2024-10-04T18:51:23Z
dc.date.issued2023
dc.departmentBayburt Üniversitesien_US
dc.description.abstractThe vertical levitation force, guidance force, and magnetic stiffness values, and thus the loading capacity and movement stability of high-temperature superconducting (HTS) Maglev systems, are aimed to be increased in this study by using auxiliary permanent magnets (PMs) in the onboard unit together with the multisurface HTS-permanent magnetic guideway (PMG) arrangement (hybrid multisurface arrangement). First, the magnetic levitation force, guidance force, and stiffness performances of the hybrid multisurface arrangement were investigated at different field cooling heights (FCH). Then, to compensate for the negation of instability that results from the higher repulsive force between the onboard PMs and the PMG and to obtain an optimal magnetic field medium, we have changed the vertical position of the auxiliary onboard PMs (Z(PM)) to Z(PM) = 0, 2, and 4 mm, at the cost of a bit of adecrement in the vertical levitation force. The bigger levitation force, together with the guidance force values for FCH = 25 mm and Z(PM) = 0 mm, indicates that the hybrid multisurface HTS-PMG arrangements are beneficial to increasing the practical applicability of Maglev systems.en_US
dc.description.sponsorshipScientific and Technological Research Council of Tuerkiye (TUBITAK) [118F426]en_US
dc.description.sponsorshipThis work was supported by the Scientific and Technological Research Council of Tuerkiye (TUBITAK), with project number of 118F426. This article was recommended by Associate Editor M. Zhang.en_US
dc.identifier.doi10.1109/TASC.2023.3237762
dc.identifier.issn1051-8223
dc.identifier.issn1558-2515
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85147278680en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1109/TASC.2023.3237762
dc.identifier.urihttp://hdl.handle.net/20.500.12403/3477
dc.identifier.volume33en_US
dc.identifier.wosWOS:000936531800001en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactions On Applied Superconductivityen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectForceen_US
dc.subjectHigh-temperature superconductorsen_US
dc.subjectForce measurementen_US
dc.subjectMagnetic flux densityen_US
dc.subjectMagnetic fieldsen_US
dc.subjectMagnetic field measurementen_US
dc.subjectElectromagneticsen_US
dc.subjectGuidance forceen_US
dc.subjecthigh-tempereture super- conducors (HTS) Magleven_US
dc.subjecthybrid multisurfaceen_US
dc.subjectlevitation forceen_US
dc.subjectmagnetic stiffnessen_US
dc.titleMagnetic Force Performance of Hybrid Multisurface HTS Maglev System With Auxiliary Onboard PMsen_US
dc.typeArticleen_US

Dosyalar