Optimum design of steel space frames with composite beams using genetic algorithm

Küçük Resim Yok

Tarih

2015

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Techno Press

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This paper presents an optimization process using Genetic Algorithm (GA) for minimum weight by selecting suitable standard sections from a specified list taken from American Institute of Steel Construction (AISC). The stress constraints obeying AISC-LRFD (American Institute of Steel Construction - Load and Resistance Factor Design), lateral displacement constraints being the top and inter-storey drift, mid-span deflection constraints for the beams and geometric constraints are considered for optimum design by using GA that mimics biological processes. Optimum designs for three different space frames taken from the literature are carried out first without considering concrete slab effects in finite element analyses for the constraints above and the results are compared with the ones available in literature. The same optimization procedures are then repeated for the case of space frames with composite (steel and concrete) beams. A program is coded in MATLAB for the optimization processes. Results obtained in the study showed that consideration of the contribution of the concrete on the behavior of the floor beams results with less steel weight and ends up with more economical designs. Copyright © 2015 Techno-Press, Ltd.

Açıklama

Anahtar Kelimeler

Composite beams, Fem analysis, Genetic algorithm, Space frame, Weight optimization, Algorithms, Composite beams and girders, Concrete slabs, Concretes, Design, Finite element method, MATLAB, Steel construction, Structural frames, American institute of steel constructions, Composite beam, FEM analysis, Geometric constraint, Lateral displacements, Optimization procedures, Space frames, Weight optimization, Genetic algorithms, Composite beams, Fem analysis, Genetic algorithm, Space frame, Weight optimization, Algorithms, Composite beams and girders, Concrete slabs, Concretes, Design, Finite element method, MATLAB, Steel construction, Structural frames, American institute of steel constructions, Composite beam, FEM analysis, Geometric constraint, Lateral displacements, Optimization procedures, Space frames, Weight optimization, Genetic algorithms

Kaynak

Steel and Composite Structures

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

19

Sayı

2

Künye