# Airy's functions in nonlocal elasticity

Küçük Resim Yok

## Tarih

2011

## Yazarlar

## Dergi Başlığı

## Dergi ISSN

## Cilt Başlığı

## Yayıncı

## Erişim Hakkı

info:eu-repo/semantics/closedAccess

## Özet

Nanostructured devices and materials, such as carbon nanotubes, Atomic Force Microscope, MEMS, etc. attract increasing attention in the scientific world. It has been realized that the classical elasticity is not capable to capture the mechanical behavior of them precisely. There is a wide consensus among the scientists that nonlocal elasticity is more capable than the classical counterpart to model the mechanical behavior of nanostructured materials and devices. In this paper a method which is useful for solving problems in nonlocal is introduced. Airy's stress functions for plane stress problems in nonlocal elasticity are studied. The nonlocal constitutive equations in integral form are discussed and a method is suggested to invert the constitutive equation which allows expressing strains in terms of stresses. A qualitative discussion is given on this inversion process. For the nonlocality kernel of exponential form, the differential equation for Airy's functions in nonlocal elasticity is obtained by introducing the strains into the compatibility condition. Appropriate polynomial forms for the Airy's function are considered and are applied to solve beam bending problems. The solutions are compared with their classical counterparts. The results are given in a series of figures and tables and are discussed in detail. This paper is concluded by indicating the implications of the presented study in nanomechanics and nanotechnology. Copyright © 2011 American Scientific Publishers.

## Açıklama

## Anahtar Kelimeler

Airy's stress functions, Bending of MEMS, Nanomechanics, Nanotechnology, Nonlocal elasticity, Airy's stress function, Atomic force microscopes, Beam bending, Classical counterpart, Compatibility conditions, Exponential form, Integral form, Inversion process, Mechanical behavior, Nano-structured, Nonlocal, Nonlocal elasticity, Nonlocalities, Plane stress, Polynomial form, Atomic force microscopy, Carbon nanotubes, Constitutive equations, Differential equations, Mechanical engineering, Nanomechanics, Nanotechnology, Problem solving, Structural design, Elasticity, Airy's stress functions, Bending of MEMS, Nanomechanics, Nanotechnology, Nonlocal elasticity, Airy's stress function, Atomic force microscopes, Beam bending, Classical counterpart, Compatibility conditions, Exponential form, Integral form, Inversion process, Mechanical behavior, Nano-structured, Nonlocal, Nonlocal elasticity, Nonlocalities, Plane stress, Polynomial form, Atomic force microscopy, Carbon nanotubes, Constitutive equations, Differential equations, Mechanical engineering, Nanomechanics, Nanotechnology, Problem solving, Structural design, Elasticity

## Kaynak

Journal of Computational and Theoretical Nanoscience

## WoS Q Değeri

Q3

## Scopus Q Değeri

Q4

## Cilt

8

## Sayı

11