The contact problem of a functionally graded layer under the effect of gravity

dc.authoridONER, Erdal/0000-0001-7492-3754
dc.authoridADIYAMAN, GOKHAN/0000-0002-3076-4090
dc.authoridYaylaci, Murat/0000-0003-0407-1685
dc.contributor.authorAdiyaman, Gokhan
dc.contributor.authorOner, Erdal
dc.contributor.authorYaylaci, Murat
dc.contributor.authorBirinci, Ahmet
dc.date.accessioned2024-10-04T18:53:51Z
dc.date.available2024-10-04T18:53:51Z
dc.date.issued2023
dc.departmentBayburt Üniversitesien_US
dc.description.abstractThis paper considers the continuous and discontinuous contact problems of a functionally graded (FG) layer under the effect of gravity. A finite distributed load is applied to the beam from the top and the beam is placed to the top of a rigid foundation. It is assumed that the shear modulus and mass density of the beam vary exponentially whereas Poisson's ratio remains constant. The problem is solved for both continuous and discontinuous cases. In each case, the governing equations and boundary conditions of the problem are reduced to an integral equation by the help of Fourier integral transform. In the continuous contact, the integral equation solved analytically and critical load that causes initial separation between the layer and the rigid foundation, separation distance and contact pressures are investigated for various non-homogeneity parameters that presents the change in the shear modulus and density and loadings. The singular integral equation in case of discontinuous contact is numerically solved by using corresponding Gauss-Chebyshev quadrature and an iterative scheme. The effect of non-homogeneity parameters and loading on the separation distance between the layer and the foundation and contact pressures are analyzed. All the results are shown in tables and figures. It is seen that increasing stiffness and decreasing density at the top of the layer reduce maximum pressures but increase separation distances. This study aims to fill the deficiency in the mechanical behavior of the coatings under gravity.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [216M524]en_US
dc.description.sponsorshipACKNOWLEDGMENTS The authors thank The Scientific and Technological Research Council of Turkey (TUBITAK) for their financial support [Project number: 216M524].en_US
dc.identifier.doi10.1002/zamm.202200560
dc.identifier.issn0044-2267
dc.identifier.issn1521-4001
dc.identifier.issue11en_US
dc.identifier.scopus2-s2.0-85162931997en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1002/zamm.202200560
dc.identifier.urihttp://hdl.handle.net/20.500.12403/3746
dc.identifier.volume103en_US
dc.identifier.wosWOS:001011427200001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherWiley-V C H Verlag Gmbhen_US
dc.relation.ispartofZamm-Zeitschrift Fur Angewandte Mathematik Und Mechaniken_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectReceding Contacten_US
dc.subjectPlane Problemen_US
dc.subjectFrictional Contacten_US
dc.subjectElastic Layeren_US
dc.subjectHalf-Planeen_US
dc.subjectMechanicsen_US
dc.titleThe contact problem of a functionally graded layer under the effect of gravityen_US
dc.typeArticleen_US

Dosyalar