Biocatalyzed Enantiomerically Pure Production of (S)?Phenyl(thiophen?2?yl)methanol
Küçük Resim Yok
Tarih
2019
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
The Journal of Heterocyclic Chemistry
Erişim Hakkı
Özet
Chiral aryl heteroaryl methanols are important precursors for the synthesis of pharmaceutically important molecules. The aims of this study were to use a biocatalyst that could efficiently bioreduce phenyl(thiophen‐2‐yl)methanone 1 to (S)‐phenyl(thiophen‐2‐yl)methanol 2, to identify the impact of the physicochemical factors that might affect the bioreduction by the biocatalyst, and to obtain multigram production of aryl heteroaryl secondary alcohol 2 with the biocatalyst under optimized conditions. Over the years, the (S)‐phenyl(thiophen‐2‐yl)methanol was synthesized on a small scale using a chemical catalyst without its enantiomerically pure form. In this study, Lactobacillus paracasei BD101 was used for the asymmetric reduction of phenyl(thiophen‐2‐yl)methanone to (S)‐phenyl(thiophen‐2‐yl)methanol in the large‐scale production. The asymmetric bioreduction conditions were systematically optimized, and the production of 3.77 g of (S)‐phenyl(thiophen‐2‐yl)methanol was carried out in enantiomerically pure form >99% enantiomeric excess (ee), >99% conversion, and 90% yield. This method obtained with this biocatalyst is a process that can be used industrially in terms of conversion, ee, and yield. This study provides guidance for the application of L. paracasei BD101 in the production of optically active aryl heteroaryl alcohols.
Açıklama
Anahtar Kelimeler
Chirality, Biotransformation, asymmetric reduction
Kaynak
The Journal of Heterocyclic Chemistry
WoS Q Değeri
Q3
Scopus Q Değeri
Q3
Cilt
56
Sayı
10
Künye
Şahin, E., & Dertli, E. (2019). Biocatalyzed Enantiomerically Pure Production of (S)‐Phenyl (thiophen‐2‐yl) methanol. Journal of Heterocyclic Chemistry, 56(10), 2884-2888.