Using solar greenhouses in cold climates and evaluating optimum type according to sizing, position and location: A case study

dc.authorid56419758300
dc.authorid56088454500
dc.contributor.authorÇakir U.
dc.contributor.authorŞahin E.
dc.date.accessioned20.04.201910:49:12
dc.date.accessioned2019-04-20T21:43:48Z
dc.date.available20.04.201910:49:12
dc.date.available2019-04-20T21:43:48Z
dc.date.issued2015
dc.departmentBayburt Üniversitesien_US
dc.description.abstractThis study deals with a comparison among five common greenhouse types with regard to total solar radiation gaining rates in greenhouse using season under some assumptions. Additionally, possibility of using greenhouses in cold climate regions is investigated. We analyzed five greenhouse types and developed a script in MATLAB platform for the solar radiation availability. This model is applicable and suitable for other buildings and places on the world. Even-span, uneven-span, vinery, semicircular and elliptic types of greenhouses have been analyzed. A "k" value (ratio of length to width of greenhouse) and greenhouse azimuth angle (GAA) are described. Seven different floor area are assigned for each greenhouse type such as 50m2, 100m2, 150m2, 200m2, 250m2, 300m2 and 400m2, respectively. For each floor area, k value is assigned from 1 to 10. Each greenhouse is oriented in 90 different angles according to south facade. Seasonal total solar energy gaining rates is computed individually for all possible greenhouse types, area, k number and orientation. Then a comprehensive comparison is made to determine the optimal greenhouse. The results show that greenhouses are usable and suitable for using in cold climate regions to increase the productivity. In addition, the elliptic type is the optimum one in all analyzed types of greenhouses for Bayburt conditions for all floor areas. It is followed by uneven-span, even-span, semi-circular and vinery type of greenhouses respectively. Shape and type of the roof are main effective parameters on solar energy gaining rates of greenhouses. Elliptic greenhouse should be preferred on the band of the latitude of Bayburt, unless there is restrictive factor like sizing and terrain. © 2015 Elsevier B.V.en_US
dc.identifier.doi10.1016/j.compag.2015.08.005
dc.identifier.endpage257
dc.identifier.issn0168-1699
dc.identifier.scopus2-s2.0-84940039086en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage245
dc.identifier.urihttps://dx.doi.org/10.1016/j.compag.2015.08.005
dc.identifier.urihttps://hdl.handle.net/20.500.12403/683
dc.identifier.volume117
dc.identifier.wosWOS:000362135900024en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier B.V.
dc.relation.ispartofComputers and Electronics in Agricultureen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGreenhouse
dc.subjectGreenhouse design
dc.subjectGreenhouse shape
dc.subjectSolar energy
dc.subjectSolar radiation
dc.subjectSustainable agriculture
dc.subjectAgriculture
dc.subjectFloors
dc.subjectSolar energy
dc.subjectSolar radiation
dc.subjectComprehensive comparisons
dc.subjectDifferent floors
dc.subjectEffective parameters
dc.subjectGreenhouse design
dc.subjectGreenhouse shapes
dc.subjectRatio of length to widths
dc.subjectSolar greenhouse
dc.subjectSustainable agriculture
dc.subjectGreenhouses
dc.subjectagricultural modeling
dc.subjectagricultural production
dc.subjectalternative agriculture
dc.subjectazimuth
dc.subjectclimatic region
dc.subjectexperimental design
dc.subjectgreenhouse effect
dc.subjectmodel validation
dc.subjectseasonal variation
dc.subjectsoftware
dc.subjectsolar power
dc.subjectsolar radiation
dc.subjectspatial analysis
dc.subjectterrain
dc.subjectBayburt
dc.subjectTurkey
dc.subjectGreenhouse
dc.subjectGreenhouse design
dc.subjectGreenhouse shape
dc.subjectSolar energy
dc.subjectSolar radiation
dc.subjectSustainable agriculture
dc.subjectAgriculture
dc.subjectFloors
dc.subjectSolar energy
dc.subjectSolar radiation
dc.subjectComprehensive comparisons
dc.subjectDifferent floors
dc.subjectEffective parameters
dc.subjectGreenhouse design
dc.subjectGreenhouse shapes
dc.subjectRatio of length to widths
dc.subjectSolar greenhouse
dc.subjectSustainable agriculture
dc.subjectGreenhouses
dc.subjectagricultural modeling
dc.subjectagricultural production
dc.subjectalternative agriculture
dc.subjectazimuth
dc.subjectclimatic region
dc.subjectexperimental design
dc.subjectgreenhouse effect
dc.subjectmodel validation
dc.subjectseasonal variation
dc.subjectsoftware
dc.subjectsolar power
dc.subjectsolar radiation
dc.subjectspatial analysis
dc.subjectterrain
dc.subjectBayburt
dc.subjectTurkey
dc.titleUsing solar greenhouses in cold climates and evaluating optimum type according to sizing, position and location: A case studyen_US
dc.typeArticleen_US

Dosyalar