Thermodynamic analysis of a cascade refrigeration system

dc.authorid56488067800
dc.contributor.authorKaraali R.
dc.date.accessioned20.04.201910:49:12
dc.date.accessioned2019-04-20T21:43:34Z
dc.date.available20.04.201910:49:12
dc.date.available2019-04-20T21:43:34Z
dc.date.issued2016
dc.departmentBayburt Üniversitesien_US
dc.description.abstractThere is a need for cooling by using the waste heat energy in food industry. Absorption cycles can be driven by waste thermal, geothermal, solar or industrial processes energies. In this study, cascade refrigeration system is thermodynamically modeled, and analyzed by using first law of thermodynamics, and exergy method. Thermodynamic properties such as pressure, temperature, entropy, enthalpy, exergy, mass flow rate in each stream are calculated for 50, 75, 100?C and for 0.8, 1.0, and 1.5 MPa pump pressure. A computer program is used that was prepared in FORTRAN by the author for the analyses. It is found that the compression-absorption cascade cooling cycle is appropriate for most of the kind of waste heat applications. Increase of the generator inlet heat temperature increases the generator inlet heat, the absorber outlet heat and the condenser 2 outlet heat energies and decreases the coefficient of performance of the absorption and the overall cycles. The generator heat decreases with increase of the pump pressure. Also increase of the pump pressure decreases the coefficient of performance of the absorption and the overall cycles. Increase of the pump pressure and the generator temperature decreases the exergetic coefficient of performance. Increase of the generator temperature and pump pressure increases the generator inlet exergy. It is concluded that increase of the generator temperature and the pump pressure increases the total destructed exergy of the cycle.en_US
dc.identifier.doi10.12693/APhysPolA.130.101
dc.identifier.endpage106
dc.identifier.issn0587-4246
dc.identifier.issue1
dc.identifier.scopus2-s2.0-84987816240en_US
dc.identifier.scopusqualityQ4en_US
dc.identifier.startpage101
dc.identifier.urihttps://dx.doi.org/10.12693/APhysPolA.130.101
dc.identifier.urihttps://hdl.handle.net/20.500.12403/603
dc.identifier.volume130
dc.identifier.wosWOS:000384810700026en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPolish Academy of Sciences
dc.relation.ispartofActa Physica Polonica Aen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectExergy
dc.subjectRefrigeration
dc.subjectTemperature
dc.subjectThermal processing (foods)
dc.subjectThermoanalysis
dc.subjectThermodynamic properties
dc.subjectThermodynamics
dc.subjectWaste heat
dc.subjectCascade refrigeration systems
dc.subjectCoefficient of Performance
dc.subjectCompression-absorption
dc.subjectFirst law of thermodynamics
dc.subjectGenerator temperature
dc.subjectIndustrial processs
dc.subjectTemperature increase
dc.subjectThermo dynamic analysis
dc.subjectAbsorption cooling
dc.subjectExergy
dc.subjectRefrigeration
dc.subjectTemperature
dc.subjectThermal processing (foods)
dc.subjectThermoanalysis
dc.subjectThermodynamic properties
dc.subjectThermodynamics
dc.subjectWaste heat
dc.subjectCascade refrigeration systems
dc.subjectCoefficient of Performance
dc.subjectCompression-absorption
dc.subjectFirst law of thermodynamics
dc.subjectGenerator temperature
dc.subjectIndustrial processs
dc.subjectTemperature increase
dc.subjectThermo dynamic analysis
dc.subjectAbsorption cooling
dc.titleThermodynamic analysis of a cascade refrigeration systemen_US
dc.typeConference Objecten_US

Dosyalar