A Taguchi approach for optimization of design parameters in a tube with coiled wire inserts

Küçük Resim Yok

Tarih

2011

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This study presents the determination of the optimum values of the design parameters in a tube with equilateral triangular cross-sectioned coiled wire inserts. The effects of the design parameters such as the ratio of the distance between the coiled wire and test tube wall to tube diameter (s/D), pitch ratio (P/D), ratio of the side length of equilateral triangle to tube diameter (a/D) and Reynolds number (Re) on heat transfer and pressure drop were investigated by using Taguchi method. The Nusselt number and friction factor were considered as performance parameters. An L9(34) orthogonal array was chosen as experimental plan. The goal of this study is to reach maximum heat transfer (i.e. Nusselt number) and minimum pressure drop (i.e. friction factor). First of all, each goal was optimized, separately. Then, all the goals were optimized together, considering the priority of the goals. Contribution ratios for each parameter on the heat transfer and pressure drop were determined. Consequently, the optimum results were found to be s/D = 0.0357, P/D = 1, a/D = 0.0714 and Re = 19800. © 2011 Elsevier Ltd. All rights reserved.

Açıklama

Anahtar Kelimeler

Coiled wire, Heat transfer, Optimization, Pressure drop, Taguchi method, Coiled wire, Design parameters, Equilateral triangles, Friction factors, Heat transfer and pressure drop, Maximum heat transfer, Minimum pressure, Optimum value, Orthogonal array, Performance parameters, Pitch ratio, Side length, Taguchi, Taguchi approach, Test tube, Tube diameters, Design, Friction, Nusselt number, Optimization, Pressure drop, Reynolds number, Taguchi methods, Wire, Tubes (components), Coiled wire, Heat transfer, Optimization, Pressure drop, Taguchi method, Coiled wire, Design parameters, Equilateral triangles, Friction factors, Heat transfer and pressure drop, Maximum heat transfer, Minimum pressure, Optimum value, Orthogonal array, Performance parameters, Pitch ratio, Side length, Taguchi, Taguchi approach, Test tube, Tube diameters, Design, Friction, Nusselt number, Optimization, Pressure drop, Reynolds number, Taguchi methods, Wire, Tubes (components)

Kaynak

Applied Thermal Engineering

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

31

Sayı

14-15

Künye