Analysis of the nonlinear optical properties, vibrational spectra, DFT method and photovoltaic performance of cyanidin-3-rutinoside chloride
dc.contributor.author | Sarikaya, Ebru Karakas | |
dc.contributor.author | Ekincioglu, Yavuz | |
dc.contributor.author | Bahceli, Semiha | |
dc.contributor.author | Dereli, Omer | |
dc.date.accessioned | 2024-10-04T18:48:14Z | |
dc.date.available | 2024-10-04T18:48:14Z | |
dc.date.issued | 2024 | |
dc.department | Bayburt Üniversitesi | en_US |
dc.description.abstract | This study aims to identify a cyanidin-3-rutinoside chloride that exhibits both photovoltaic performance and nonlinear optical properties, which may be utilized in the field of optoelectronics. Prior to investigating these properties, the stable structure must be determined. For this purpose, its conformational analysis is performed by the Molecular Force Field method with the spartan program. The exact nature of the stable configuration has been ascertained by empirical evidence. The energy of the stable configuration is -1654184.76 kcal/mol, and its dipole moment is 9.94 Debye. Cyanidin-3-rutinoside chloride has been investigated using experimental FT-IR and Raman spectroscopies. Meanwhile, the DFT method at the B3LYP/6-311 + + G(d, p) level was employed in order to study the simulated FT-IR and Raman spectra, the HOMO-LUMO analysis, the molecular electrostatic potentials (MEP), and the non-linear optical (NLO) characteristics of the title molecule. The HOMO and LUMO energies are - 6.45 and - 3.64 electron volts (eV), respectively, with a gap value of 2.81 eV. Additionally, the title compound's open-circuit voltage, the transition density matrix light-harvesting efficiency, driving force, and binding energy were calculated with by taking photovoltaic cell properties into account. Furthermore, investigations of hole reorganization energy, electron reorganization energy, and total reorganization energy were carried out at the B3LYP/6-31G(d, p) level for the cyanidin-3-rutinoside chloride of interest. In addition, density of state calculations and NBO were made at the B3LYP/6-31G(d, p) level. We calculated the following values for LHE, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:{V}_{oc}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:{{\Delta\:}\text{G}}_{\text{i}\text{n}\text{j}\text{e}\text{c}\text{t}}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:{E}_{b}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:{\lambda\:}_{h}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:{\lambda\:}_{e}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:{\lambda\:}_{total}$$\end{document} : 0.06, 2.45 eV, 0.20 eV, 0.56 eV, 0.50 eV, 0.57 eV and 1.06 eV, respectively. | en_US |
dc.description.sponsorship | Necmettin Erbakan University | en_US |
dc.description.sponsorship | No Statement Available | en_US |
dc.identifier.doi | 10.1007/s11082-024-07294-7 | |
dc.identifier.issn | 0306-8919 | |
dc.identifier.issn | 1572-817X | |
dc.identifier.issue | 8 | en_US |
dc.identifier.scopus | 2-s2.0-85200456040 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s11082-024-07294-7 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12403/2983 | |
dc.identifier.volume | 56 | en_US |
dc.identifier.wos | WOS:001285310000002 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Optical and Quantum Electronics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | DFT | en_US |
dc.subject | Cyanidin-3-rutinoside chloride | en_US |
dc.subject | Nonlinear optic | en_US |
dc.subject | Photovoltaic performance | en_US |
dc.title | Analysis of the nonlinear optical properties, vibrational spectra, DFT method and photovoltaic performance of cyanidin-3-rutinoside chloride | en_US |
dc.type | Article | en_US |