Spontaneous Mutation Reveals Influence of Exopolysaccharide on Lactobacillus johnsonii Surface Characteristics

dc.authorid7006468600
dc.authorid8667949200
dc.authorid36815706500
dc.authorid8377637900
dc.authorid24166136800
dc.authorid7102533110
dc.authorid8339792100
dc.authorid7402464998
dc.authorid6603867601
dc.contributor.authorHorn N.
dc.contributor.authorWegmann U.
dc.contributor.authorDertli E.
dc.contributor.authorMulholland F.
dc.contributor.authorCollins S.R.A.
dc.contributor.authorWaldron K.W.
dc.contributor.authorBongaerts R.J.
dc.contributor.authorMayer M.J.
dc.contributor.authorNarbad A.
dc.date.accessioned20.04.201910:49:12
dc.date.accessioned2019-04-20T21:44:28Z
dc.date.available20.04.201910:49:12
dc.date.available2019-04-20T21:44:28Z
dc.date.issued2013
dc.departmentBayburt Üniversitesien_US
dc.description.abstractAs a competitive exclusion agent, Lactobacillus johnsonii FI9785 has been shown to prevent the colonization of selected pathogenic bacteria from the chicken gastrointestinal tract. During growth of the bacterium a rare but consistent emergence of an altered phenotype was noted, generating smooth colonies in contrast to the wild type rough form. A smooth colony variant was isolated and two-dimensional gel analysis of both strains revealed a protein spot with different migration properties in the two phenotypes. The spot in both gels was identified as a putative tyrosine kinase (EpsC), associated with a predicted exopolysaccharide gene cluster. Sequencing of the epsC gene from the smooth mutant revealed a single substitution (G to A) in the coding strand, resulting in the amino acid change D88N in the corresponding gene product. A native plasmid of L. johnsonii was engineered to produce a novel vector for constitutive expression and this was used to demonstrate that expression of the wild type epsC gene in the smooth mutant produced a reversion to the rough colony phenotype. Both the mutant and epsC complemented strains had increased levels of exopolysaccharides compared to the wild type strain, indicating that the rough phenotype is not solely associated with the quantity of exopolysaccharide. Another gene in the cluster, epsE, that encoded a putative undecaprenyl-phosphate galactosephosphotransferase, was deleted in order to investigate its role in exopolysaccharide biosynthesis. The ?epsE strain exhibited a large increase in cell aggregation and a reduction in exopolysaccharide content, while plasmid complementation of epsE restored the wild type phenotype. Flow cytometry showed that the wild type and derivative strains exhibited clear differences in their adhesive ability to HT29 monolayers in tissue culture, demonstrating an impact of EPS on surface properties and bacteria-host interactions. © 2013 Horn et al.en_US
dc.identifier.doi10.1371/journal.pone.0059957
dc.identifier.issn1932-6203
dc.identifier.issue3
dc.identifier.pmid23544114en_US
dc.identifier.scopus2-s2.0-84875446710en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://dx.doi.org/10.1371/journal.pone.0059957
dc.identifier.urihttps://hdl.handle.net/20.500.12403/863
dc.identifier.volume8
dc.identifier.wosWOS:000317480700073en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.relation.ispartofPLoS ONEen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectexopolysaccharide
dc.subjectphosphotransferase
dc.subjectprotein tyrosine kinase
dc.subjectunclassified drug
dc.subjectundecaprenyl phosphate galactose phosphotransferase
dc.subjectamino acid substitution
dc.subjectarticle
dc.subjectbacterial colonization
dc.subjectbacterial gene
dc.subjectbacterial strain
dc.subjectbacterium adherence
dc.subjectbacterium isolation
dc.subjectcarbohydrate analysis
dc.subjectcarbohydrate synthesis
dc.subjectcell structure
dc.subjectcontrolled study
dc.subjectDNA sequence
dc.subjectenzyme synthesis
dc.subjectexopolysaccharide C gene
dc.subjectexopolysaccharide E gene
dc.subjectexopolysaccharide gene
dc.subjectgene
dc.subjectgene cluster
dc.subjectgene expression
dc.subjectgene function
dc.subjectgene mutation
dc.subjecthost pathogen interaction
dc.subjecthuman
dc.subjecthuman cell
dc.subjectLactobacillus johnsonii
dc.subjectmutational analysis
dc.subjectnonhuman
dc.subjectnucleotide sequence
dc.subjectphenotype
dc.subjectprotein transport
dc.subjecttwo dimensional gel electrophoresis
dc.subjectwild type
dc.subjectAmino Acid Sequence
dc.subjectBacterial Adhesion
dc.subjectBacterial Proteins
dc.subjectCarbohydrates
dc.subjectCell Membrane
dc.subjectColony Count, Microbial
dc.subjectGene Deletion
dc.subjectGenes, Bacterial
dc.subjectGenetic Complementation Test
dc.subjectHT29 Cells
dc.subjectHumans
dc.subjectLactobacillus
dc.subjectMolecular Sequence Data
dc.subjectMolecular Weight
dc.subjectMultigene Family
dc.subjectMutation
dc.subjectPhenotype
dc.subjectPolysaccharides, Bacterial
dc.subjectProteomics
dc.subjectSpectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
dc.subjectBacteria (microorganisms)
dc.subjectLactobacillus johnsonii
dc.subjectexopolysaccharide
dc.subjectphosphotransferase
dc.subjectprotein tyrosine kinase
dc.subjectunclassified drug
dc.subjectundecaprenyl phosphate galactose phosphotransferase
dc.subjectamino acid substitution
dc.subjectarticle
dc.subjectbacterial colonization
dc.subjectbacterial gene
dc.subjectbacterial strain
dc.subjectbacterium adherence
dc.subjectbacterium isolation
dc.subjectcarbohydrate analysis
dc.subjectcarbohydrate synthesis
dc.subjectcell structure
dc.subjectcontrolled study
dc.subjectDNA sequence
dc.subjectenzyme synthesis
dc.subjectexopolysaccharide C gene
dc.subjectexopolysaccharide E gene
dc.subjectexopolysaccharide gene
dc.subjectgene
dc.subjectgene cluster
dc.subjectgene expression
dc.subjectgene function
dc.subjectgene mutation
dc.subjecthost pathogen interaction
dc.subjecthuman
dc.subjecthuman cell
dc.subjectLactobacillus johnsonii
dc.subjectmutational analysis
dc.subjectnonhuman
dc.subjectnucleotide sequence
dc.subjectphenotype
dc.subjectprotein transport
dc.subjecttwo dimensional gel electrophoresis
dc.subjectwild type
dc.subjectAmino Acid Sequence
dc.subjectBacterial Adhesion
dc.subjectBacterial Proteins
dc.subjectCarbohydrates
dc.subjectCell Membrane
dc.subjectColony Count, Microbial
dc.subjectGene Deletion
dc.subjectGenes, Bacterial
dc.subjectGenetic Complementation Test
dc.subjectHT29 Cells
dc.subjectHumans
dc.subjectLactobacillus
dc.subjectMolecular Sequence Data
dc.subjectMolecular Weight
dc.subjectMultigene Family
dc.subjectMutation
dc.subjectPhenotype
dc.subjectPolysaccharides, Bacterial
dc.subjectProteomics
dc.subjectSpectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
dc.subjectBacteria (microorganisms)
dc.subjectLactobacillus johnsonii
dc.titleSpontaneous Mutation Reveals Influence of Exopolysaccharide on Lactobacillus johnsonii Surface Characteristicsen_US
dc.typeArticleen_US

Dosyalar