A novel strategy for probiotic bacteria: Ensuring microbial stability of fish fillets using characterized probiotic bacteria-loaded nanofibers

Küçük Resim Yok

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Nanoencapsulation of probiotic bacteria (L. rhamnosus) into poly(vinyl alcohol) & sodium alginate-based nanofibers (VSPBe) and also the production of poly(vinyl alcohol) & sodium alginate-based nanofibers (VS) were successfully obtained. VSPBe and VS nanofibers were used to limit the Total Mesophilic Aerobic Bacteria (TMABc), Psychrophilic Bacteria (TPBc) and also Yeast and Mold count (TYMc) growth in the fish fillet. Dispersion stability (? potential ?6.29 mV and ?7.74 mV, for VS and VSPBe, respectively), thermal decomposition (a reduction in mass of VS and VSPBe at temperatures 50 °C, corresponding to <5% and >5%, respectively) and morphological properties of nanofibers (diameters between 60 nm and 580 nm) were revealed by characterization analysis. Microbiological tests demonstrated that VS and VSPBe were effectively delayed the TMABc and TPBc growth in fish fillets up to 38%. However, the antimicrobial effects of nanofibers were not pronounced for TYM growth in the fish fillet. The viability of probiotic bacteria could be provided after electrospinning process and the use of L. rhamnosus-loaded nanofibers for delaying microbial growth in the fish fillets could be evaluated as a natural/novel technique. © 2018

Açıklama

Anahtar Kelimeler

Electrospinning, Microbial stability of fish, Nanofiber, Nanotechnology, Probiotic, Beryllium compounds, Decomposition, Electrospinning, Fish, Nanofibers, Nanotechnology, Polyvinyl alcohols, Sodium, Sodium alginate, Anti-microbial effects, Electrospinning process, Microbial stability, Microbiological tests, Morphological properties, Probiotics, Psychrophilic bacteria, Yeast and mold count, Aerobic bacteria, Electrospinning, Microbial stability of fish, Nanofiber, Nanotechnology, Probiotic, Beryllium compounds, Decomposition, Electrospinning, Fish, Nanofibers, Nanotechnology, Polyvinyl alcohols, Sodium, Sodium alginate, Anti-microbial effects, Electrospinning process, Microbial stability, Microbiological tests, Morphological properties, Probiotics, Psychrophilic bacteria, Yeast and mold count, Aerobic bacteria

Kaynak

Innovative Food Science and Emerging Technologies

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

48

Sayı

Künye