Optimization of design parameters for heat transfer and friction factor in a heat sink with hollow trapezoidal baffles

dc.authorid7103170403
dc.authorid57207827690
dc.authorid37111080900
dc.authorid57207817244
dc.authorid7006121164
dc.contributor.authorSahin B.
dc.contributor.authorAtes I.
dc.contributor.authorManay E.
dc.contributor.authorBayrakceken A.
dc.contributor.authorCelik C.
dc.date.accessioned20.04.201910:49:12
dc.date.accessioned2019-04-20T21:42:57Z
dc.date.available20.04.201910:49:12
dc.date.available2019-04-20T21:42:57Z
dc.date.issued2019
dc.departmentBayburt Üniversitesien_US
dc.description.abstractThe aim of this study is to optimize the design parameters of a heat sink on which hollow trapezoidal baffles are mounted on the bottom surface by using Taguchi experimental-design method. The Nusselt number and the friction factor are considered as performance parameters. An orthogonal array is selected as experimental plan for the six parameters: the corner angle (?), the inclination angle (?), the baffle height (H), the baffle length (L), the baffle width (S) and Reynolds number. First of all, each goal has been optimized, separately. Then, all the goals have been optimized together, considering the priority of the goals. The length of the baffle is found to be the most influential parameter on the friction factor. This can be attributed the enhanced effect of longitudinal vortices with baffle length in flow direction. Likewise, it is demonstrated that the most effective parameter on the heat transfer is Reynolds number. The results show that the baffle width (S) and the corner angle (?) have insignificant effect on Nusselt number. The maximum heat transfer was obtained at Re = 17,000, H = 36 mm, L = 45 mm, S = 26 mm, ? = 0°, ? = 0°. The inclination angle (?) and the baffle height (H) have nearly no effect on the friction factor. The minimum friction factor was obtained at Re = 17,000, H = 20 mm, L = 25 mm, S = 26 mm, ? = 16°, ? = 0°. The inclination angle (?) and the baffle height (H) have nearly no effect on the friction factor. It can be concluded that the higher heat transfer rates can be achieved with lower pressure drop penalty with this type of vortex generator in particular configurations. © 2019 Elsevier Ltden_US
dc.identifier.doi10.1016/j.applthermaleng.2019.03.056
dc.identifier.endpage86
dc.identifier.issn1359-4311
dc.identifier.scopus2-s2.0-85062943569en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage76
dc.identifier.urihttps://dx.doi.org/10.1016/j.applthermaleng.2019.03.056
dc.identifier.urihttps://hdl.handle.net/20.500.12403/296
dc.identifier.volume154
dc.identifier.wosWOS:000469892000008en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Ltd
dc.relation.ispartofApplied Thermal Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvective heat transfer
dc.subjectHollow trapezoidal baffles
dc.subjectTaguchi method
dc.subjectTurbulent flow
dc.subjectConvective heat transfer
dc.subjectHollow trapezoidal baffles
dc.subjectTaguchi method
dc.subjectTurbulent flow
dc.titleOptimization of design parameters for heat transfer and friction factor in a heat sink with hollow trapezoidal bafflesen_US
dc.typeArticleen_US

Dosyalar