Biosorption properties of Morus alba L. for Cd (II) ions removal from aqueous solutions

dc.authorid23100981600
dc.authorid25646623400
dc.authorid16042074800
dc.authorid6602656875
dc.contributor.authorSerencam H.
dc.contributor.authorOzdes D.
dc.contributor.authorDuran C.
dc.contributor.authorTufekci M.
dc.date.accessioned20.04.201910:49:12
dc.date.accessioned2019-04-20T21:44:26Z
dc.date.available20.04.201910:49:12
dc.date.available2019-04-20T21:44:26Z
dc.date.issued2013
dc.departmentBayburt Üniversitesien_US
dc.description.abstractThe abundantly available industrial waste product Morus alba L. pomace (MAP) is one of the cost-effective biosorbent for removal of metal ions from aqueous solutions. Hence, in the present study, we aimed to test the ability of MAP to remove Cd(II) ions through batch biosorption process. Firstly, MAP was characterized using several techniques, and then the influence of various experimental parameters such as initial pH of the aqueous solution, initial Cd(II) concentration, contact time, MAP concentration, and temperature were evaluated upon the biosorption process. It was found that the maximum uptake of Cd(II) ions occurred at initial pH 6.0 and optimum contact time was observed as 60 min. Cd(II) ions adsorption on MAP analyzed by the Langmuir and Freundlich isotherm models and the maximum monolayer biosorption capacity of MAP was found to be 21.69 mg g -1 by using the Langmuir isotherm model. The pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models were employed to describe the biosorption kinetics. In order to investigate the thermodynamic properties of the biosorption process, the changes in the Gibbs free energy (â?†G), enthalpy (â?†H), and entropy (â?†S) were also evaluated and it has been concluded that the process was feasible, spontaneous, and endothermic in the temperature range of 5-40 C. © 2012 Springer Science+Business Media Dordrecht.en_US
dc.identifier.doi10.1007/s10661-012-3001-6
dc.identifier.endpage6011
dc.identifier.issn0167-6369
dc.identifier.issue7
dc.identifier.pmid23184397en_US
dc.identifier.scopus2-s2.0-84878692112en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage6003
dc.identifier.urihttps://dx.doi.org/10.1007/s10661-012-3001-6
dc.identifier.urihttps://hdl.handle.net/20.500.12403/858
dc.identifier.volume185
dc.identifier.wosWOS:000319753600051en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.relation.ispartofEnvironmental Monitoring and Assessmenten_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBiosorption
dc.subjectCadmium
dc.subjectKinetics
dc.subjectMorus alba L. pomace
dc.subjectRemoval
dc.subjectThermodynamics
dc.subjectBiosorption capacity
dc.subjectBiosorption kinetics
dc.subjectExperimental parameters
dc.subjectIntraparticle diffusion models
dc.subjectLangmuir and Freundlich isotherm models
dc.subjectLangmuir isotherm models
dc.subjectMorus alba
dc.subjectPseudo second order
dc.subjectAdsorption
dc.subjectBiosorption
dc.subjectCadmium
dc.subjectDyes
dc.subjectEnzyme kinetics
dc.subjectIsotherms
dc.subjectMetal ions
dc.subjectMonolayers
dc.subjectPlants (botany)
dc.subjectRemoval
dc.subjectThermodynamics
dc.subjectCadmium compounds
dc.subjectcadmium
dc.subjectabsorption
dc.subjectaqueous solution
dc.subjectcadmium
dc.subjectconcentration (composition)
dc.subjectcost-benefit analysis
dc.subjectenthalpy
dc.subjectentropy
dc.subjectexperimental study
dc.subjectparameterization
dc.subjectpH
dc.subjectreaction kinetics
dc.subjectthermodynamics
dc.subjecttree
dc.subjectanaerobic digestion
dc.subjectarticle
dc.subjectbiosorption
dc.subjectcorrelation coefficient
dc.subjectenthalpy
dc.subjectentropy
dc.subjectisotherm
dc.subjectkinetics
dc.subjectmoisture
dc.subjectMorus alba
dc.subjectpH
dc.subjectphysical chemistry
dc.subjecttemperature
dc.subjectthermodynamics
dc.subjectwaste component removal
dc.subjectAdsorption
dc.subjectBiodegradation, Environmental
dc.subjectCadmium
dc.subjectCations, Divalent
dc.subjectHydrogen-Ion Concentration
dc.subjectMorus
dc.subjectTemperature
dc.subjectWaste Disposal, Fluid
dc.subjectWater Pollutants, Chemical
dc.subjectMorus alba
dc.subjectBiosorption
dc.subjectCadmium
dc.subjectKinetics
dc.subjectMorus alba L. pomace
dc.subjectRemoval
dc.subjectThermodynamics
dc.subjectBiosorption capacity
dc.subjectBiosorption kinetics
dc.subjectExperimental parameters
dc.subjectIntraparticle diffusion models
dc.subjectLangmuir and Freundlich isotherm models
dc.subjectLangmuir isotherm models
dc.subjectMorus alba
dc.subjectPseudo second order
dc.subjectAdsorption
dc.subjectBiosorption
dc.subjectCadmium
dc.subjectDyes
dc.subjectEnzyme kinetics
dc.subjectIsotherms
dc.subjectMetal ions
dc.subjectMonolayers
dc.subjectPlants (botany)
dc.subjectRemoval
dc.subjectThermodynamics
dc.subjectCadmium compounds
dc.subjectcadmium
dc.subjectabsorption
dc.subjectaqueous solution
dc.subjectcadmium
dc.subjectconcentration (composition)
dc.subjectcost-benefit analysis
dc.subjectenthalpy
dc.subjectentropy
dc.subjectexperimental study
dc.subjectparameterization
dc.subjectpH
dc.subjectreaction kinetics
dc.subjectthermodynamics
dc.subjecttree
dc.subjectanaerobic digestion
dc.subjectarticle
dc.subjectbiosorption
dc.subjectcorrelation coefficient
dc.subjectenthalpy
dc.subjectentropy
dc.subjectisotherm
dc.subjectkinetics
dc.subjectmoisture
dc.subjectMorus alba
dc.subjectpH
dc.subjectphysical chemistry
dc.subjecttemperature
dc.subjectthermodynamics
dc.subjectwaste component removal
dc.subjectAdsorption
dc.subjectBiodegradation, Environmental
dc.subjectCadmium
dc.subjectCations, Divalent
dc.subjectHydrogen-Ion Concentration
dc.subjectMorus
dc.subjectTemperature
dc.subjectWaste Disposal, Fluid
dc.subjectWater Pollutants, Chemical
dc.subjectMorus alba
dc.titleBiosorption properties of Morus alba L. for Cd (II) ions removal from aqueous solutionsen_US
dc.typeArticleen_US

Dosyalar