Infinitely many solutions for the stationary fractional p-Kirchhoff problems in RN
dc.contributor.author | Akkoyunlu, Ebubekir | |
dc.contributor.author | Ayazoglu, Rabil | |
dc.date.accessioned | 2024-10-04T18:51:07Z | |
dc.date.available | 2024-10-04T18:51:07Z | |
dc.date.issued | 2019 | |
dc.department | Bayburt Üniversitesi | en_US |
dc.description.abstract | In the present paper, we investigate the existence of multiple solutions for the nonhomogeneous fractional p-Kirchhoff equation M(integral integral R2N vertical bar u(x) - u(y)vertical bar(p)/vertical bar x - y vertical bar(N+ps)dxdy + integral V-RN(x)vertical bar u vertical bar p dx) x((-Delta)(p)(s) u + V(x) vertical bar u vertical bar(p-2) u) = f (x, u) in R-N, where (-Delta)(p)(s) is the fractional p-Laplacian operator, 0 < s < 1 < p < infinity with sp < N, M : R-0(+) -> R-0(+) is a nonnegative, continuous and increasing Kirchhoff function, the nonlinearity f : R-N x R -> R is a Caratheodory function that obeys some conditions which will be stated later and V is an element of C(R-N, R+) is a non-negative potential function. We first establish the Bartsch-Pankov-Wang type compact embedding theorem for the fractional Sobolev spaces. Then multiplicity results are obtained by using the variational method, (S+) mapping theory and Krasnoselskii's genus theory. | en_US |
dc.identifier.doi | 10.1007/s12044-019-0515-7 | |
dc.identifier.issn | 0253-4142 | |
dc.identifier.issn | 0973-7685 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-85069704014 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s12044-019-0515-7 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12403/3395 | |
dc.identifier.volume | 129 | en_US |
dc.identifier.wos | WOS:000477624700004 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer India | en_US |
dc.relation.ispartof | Proceedings of the Indian Academy of Sciences-Mathematical Sciences | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Kirchhoff equation | en_US |
dc.subject | fractional p-Laplacian | en_US |
dc.subject | variational methods | en_US |
dc.subject | Krasnoselskii's genus | en_US |
dc.subject | infinitely many solutions | en_US |
dc.title | Infinitely many solutions for the stationary fractional p-Kirchhoff problems in RN | en_US |
dc.type | Article | en_US |