Toolbox for tracking and analyzing crowded mixture of colloidal particles
dc.authorid | K. P. Velu, Sabareesh/0000-0003-4793-3062 | |
dc.authorid | Yucel, Harun/0000-0001-9406-0220 | |
dc.contributor.author | Yucel, Harun | |
dc.contributor.author | Velu, Sabareesh K. P. | |
dc.date.accessioned | 2024-10-04T18:54:04Z | |
dc.date.available | 2024-10-04T18:54:04Z | |
dc.date.issued | 2021 | |
dc.department | Bayburt Üniversitesi | en_US |
dc.description.abstract | We present a MATLAB-based multiple particle tracking (mPosTracker) algorithm to detect and track crowded colloidal particles that are two-dimensionally imaged using digital video microscopy. Our algorithm adopts three optional detection methods using threshold settings namely; centroid method (CM), radial symmetry method (RSM) and partial radial symmetry method (pRSM). In contrast to other reported algorithms, it allows classifying a maximum of three types of particles based on area or intensity. Furthermore, we include a toolbox to perform quantitative particle analysis like number density, trajectories with mean square displacement, and Voronoi cells with six-fold bond parameters to reveal the physics of examined dataset. To demonstrate the abilities of mPosTracker, we show the analysis outcomes on synthetically and experimentally acquired time-lapse microscopy datasets. mPosTracker is suitable for studying the dynamics of crowd behaviour, self-assembly, and manipulation of multi-component colloids under external fields. | en_US |
dc.identifier.doi | 10.1016/j.colcom.2021.100546 | |
dc.identifier.issn | 2215-0382 | |
dc.identifier.scopus | 2-s2.0-85119158836 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.colcom.2021.100546 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12403/3853 | |
dc.identifier.volume | 45 | en_US |
dc.identifier.wos | WOS:000721475300007 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Colloid and Interface Science Communications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Digital video microscopy (DVM) | en_US |
dc.subject | Image processing | en_US |
dc.subject | Particle detection | en_US |
dc.subject | Particle tracking | en_US |
dc.subject | Particle classification | en_US |
dc.subject | Binary colloids | en_US |
dc.subject | Crowded particles | en_US |
dc.title | Toolbox for tracking and analyzing crowded mixture of colloidal particles | en_US |
dc.type | Article | en_US |