Thermal and energy analysis of a novel solar updraft tower design with divergent chimney and convergent collector concept: CFD analysis with experimental validation

dc.authoridShaik, Dr. Saboor/0000-0002-0490-4766
dc.authoridCuce, Erdem/0000-0003-0150-4705
dc.contributor.authorCuce, Pinar Mert
dc.contributor.authorSaxena, Abhishek
dc.contributor.authorCuce, Erdem
dc.contributor.authorKontoleon, Karolos J.
dc.contributor.authorOztekin, Erman K.
dc.contributor.authorShaik, Saboor
dc.contributor.authorGuo, Shaopeng
dc.date.accessioned2024-10-04T18:54:02Z
dc.date.available2024-10-04T18:54:02Z
dc.date.issued2024
dc.departmentBayburt Üniversitesien_US
dc.description.abstractThe fact that energy sources are heavily dependent on fossil fuels increases the need for alternative energy day by day. Solar energy is the most popular alternative energy source with massive potential. Solar chimney power plants (SCPP) are one of the systems of interest based on solar energy. SCPP systems are rare systems that can provide 24-hour power output. Their performance has been the subject of constant research since the first pilot plant in Manzanares. Design is crucial for performance figures of SCPPs, and the limitation of climatic parameters causes the system to be approached with different designs. This study makes a 3D CFD model by combining the divergent chimney and convergent collector structure based on the first pilot plant. The solar ray tracing algorithm and the RNG k-e turbulence model are applied and the model equations are solved under dynamic conditions with the reliable software ANSYS FLUENT. After the mesh-independent solution of the model is complete, it is validated with experimental data. The two cases are compared for solar radiation of 1000 W/m2 and environmental temperature of 293 K. A power output of 50.51 kW is achieved for standard pilot sizing. With the new model, the power output rises to 146.34 kW. It is seen that the divergent chimney and convergent collector affect the airflow in the system, increasing the maximum air velocity to 19.363 m/s. In parallel with the experimental data, it is seen that the temperature on the ground exceeds 360 K in the CFD results.en_US
dc.identifier.doi10.1093/ijlct/ctad152
dc.identifier.endpage722en_US
dc.identifier.issn1748-1317
dc.identifier.issn1748-1325
dc.identifier.scopus2-s2.0-85189349992en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage714en_US
dc.identifier.urihttps://doi.org/10.1093/ijlct/ctad152
dc.identifier.urihttp://hdl.handle.net/20.500.12403/3841
dc.identifier.volume19en_US
dc.identifier.wosWOS:001193257900002en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherOxford Univ Pressen_US
dc.relation.ispartofInternational Journal of Low-Carbon Technologiesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectsolar chimney power plantsen_US
dc.subjectdivergent chimneyen_US
dc.subjectconvergent collectoren_US
dc.subjectmaximum velocityen_US
dc.subjectenhanced power outputen_US
dc.titleThermal and energy analysis of a novel solar updraft tower design with divergent chimney and convergent collector concept: CFD analysis with experimental validationen_US
dc.typeArticleen_US

Dosyalar