A study on the effects of nanostructure reinforcement on the failure load in adhesively bonded joints after the subjected to fully reversed fatigue load
Küçük Resim Yok
Tarih
2022
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Taylor & Francis Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Today, adhesively bonded joints are frequently used in the space and aviation industries. Joints used in these sectors are generally subject to dynamic loads due to environmental factors. This study experimentally and numerically investigated the static tensile loads of adhesively bonded joints after fully reversed (combination of tensile and compressive) fatigue loading where nanoadhesives - obtained by adding carbon nanostructures into aerospace grade structural adhesive - were used to bond the joints. Single lap joint specimens were produced using a nanocomposite adhesive obtained by adding 1 wt. % graphene, 1 wt. % carbon nanotubes-COOH and 1 wt. % fullerene C60 nanostructures to a DP460 structural adhesive. AA2024-T3 aluminum alloy and carbon fiber-reinforced composites (CFRCs) with a plain weave fabric (0/90 degrees) were used as adherend materials. First, static tensile tests were applied to these joints to obtain their failure loads and then fully reversed sinusoidal fatigue tests were applied under a constant load amplitude, a frequency of 20 Hz and a load ratio of R = -1. Considering the failure loads obtained from the static tensile tests, 10(6) fully reversed fatigue loading cycles were applied - which was accepted as an infinite life - at 400 N, 800 N and 1200 N load levels. The static tensile failure loads and energy values absorbed of these joints were obtained and the change in the failure loads and energy values absorbed of the joints subjected to fatigue was investigated. The static failure loads of aluminum joints bonded with nanoadhesive and subjected to fully reversed fatigue loading increased by approximately 5% to 17%, depending on the nanostructure type added to the adhesive. Moreover, it was observed that there was an increase in loading of approximately 3% to 20% for the nanostructure reinforced joints obtained by using CFRCs with [0/90](6) stacking sequence.
Açıklama
Anahtar Kelimeler
Composites, nanostructures, adhesives with nanoparticles, mechanical testing, fatigue cycle, joints
Kaynak
Journal of Adhesion
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
98
Sayı
13