DYNAMICS IN A PARABOLIC-ELLIPTIC CHEMOTAXIS SYSTEM WITH LOGISTIC SOURCE INVOLVING EXPONENTS DEPENDING ON THE SPATIAL VARIABLES
dc.contributor.author | Ayazoglu, Rabil | |
dc.contributor.author | Kadakal, Mahir | |
dc.contributor.author | Akkoyunlu, Ebubekir | |
dc.date.accessioned | 2024-10-04T18:49:33Z | |
dc.date.available | 2024-10-04T18:49:33Z | |
dc.date.issued | 2024 | |
dc.department | Bayburt Üniversitesi | en_US |
dc.description.abstract | We consider the parabolic-elliptic chemotaxis system with the exponents depending on the spatial variables logistic source and nonlinear signal production: ut = Delta u-chi del (u del upsilon)+f (x, u), (x, t) is an element of Omega x (0, T), 0 = Delta upsilon - upsilon +u(gamma) in a bounded domain Omega subset of R-N (N > 1) with smooth boundary, subject to non negative initial data and homogeneous Neumann boundary conditions, where chi > 0, gamma >= 1 and partial derivative/partial derivative nu denotes the outward normal derivative on partial derivative Omega. The logistic function f fulfilling f (x, s) <= eta s - mu s(alpha(x)+1), eta >= 0, mu > 0 for all s > 0 with f (x, 0) >= 0 for all x is an element of Omega, where alpha : Omega -> [1, infinity) is a measurable function. It is proved that if 1 <= alpha (x) < infinity for all x is an element of Omega such that ess inf(x is an element of Omega) alpha (x) > gamma or ess inf(x is an element of Omega) alpha (x) = gamma with mu > chi, then there exists a nonnegative classical solution (u, upsilon) that is global-in-time and bounded. In addition, under the particular conditions gamma = 1 and f (x, s) = mu (s - s(alpha(x)+1)), if mu is sufficiently large, the global bounded solution (u, upsilon) satisfies IIu (, t) - 1II(L)infinity(Omega) + II upsilon (, t) - 1II(L)infinity(Omega) <= Ce (- k/N+2t) for all t > 0 with k = min{ chi 2/4 , 1/2 } , C > 0. The global-in-time existence and uniform-in-time boundedness of solutions are established under specific parameter conditions, which improves the known results. | en_US |
dc.identifier.doi | 10.3934/dcdsb.2023169 | |
dc.identifier.endpage | 2122 | en_US |
dc.identifier.issn | 1531-3492 | |
dc.identifier.issn | 1553-524X | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-85187376864 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 2110 | en_US |
dc.identifier.uri | https://doi.org/10.3934/dcdsb.2023169 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12403/3203 | |
dc.identifier.volume | 29 | en_US |
dc.identifier.wos | WOS:001086232200001 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Amer Inst Mathematical Sciences-Aims | en_US |
dc.relation.ispartof | Discrete and Continuous Dynamical Systems-Series B | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Chemotaxis system | en_US |
dc.subject | signal production | en_US |
dc.subject | exponents depending on the spatial variables | en_US |
dc.subject | global boundedness | en_US |
dc.subject | asymptotic behavior | en_US |
dc.title | DYNAMICS IN A PARABOLIC-ELLIPTIC CHEMOTAXIS SYSTEM WITH LOGISTIC SOURCE INVOLVING EXPONENTS DEPENDING ON THE SPATIAL VARIABLES | en_US |
dc.type | Article | en_US |