Infinitely many solutions for a class of stationary Schrödinger equations with non-standard growth
dc.authorid | 57194584788 | |
dc.authorid | 6507285451 | |
dc.contributor.author | Ayazoglu (Mashiyev) R. | |
dc.contributor.author | Alisoy G. | |
dc.date.accessioned | 20.04.201910:49:12 | |
dc.date.accessioned | 2019-04-20T21:43:05Z | |
dc.date.available | 20.04.201910:49:12 | |
dc.date.available | 2019-04-20T21:43:05Z | |
dc.date.issued | 2018 | |
dc.department | Bayburt Üniversitesi | en_US |
dc.description.abstract | In this paper, we study the existence of infinitely many solutions for a class of stationary Schrödinger type equations in ?N involving the p(x)-Laplacian. The non-linearity is superlinear but does not satisfy the Ambrosetti-Rabinowitz type condition. The main arguments are based on the geometry supplied by Fountain Theorem. We also establish a Bartsch type compact embedding theorem for variable exponent spaces. © 2017 Informa UK Limited, trading as Taylor & Francis Group. | en_US |
dc.identifier.doi | 10.1080/17476933.2017.1322074 | |
dc.identifier.endpage | 500 | |
dc.identifier.issn | 1747-6933 | |
dc.identifier.issue | 4 | |
dc.identifier.scopus | 2-s2.0-85021095448 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 482 | |
dc.identifier.uri | https://dx.doi.org/10.1080/17476933.2017.1322074 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12403/388 | |
dc.identifier.volume | 63 | |
dc.identifier.wos | WOS:000423716700003 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taylor and Francis Ltd. | |
dc.relation.ispartof | Complex Variables and Elliptic Equations | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | p(x)-Laplace operator | |
dc.subject | Schrödinger type equation | |
dc.subject | Variable exponent Lebesgue–Sobolev spaces | |
dc.subject | variant Fountain theorem | |
dc.subject | p(x)-Laplace operator | |
dc.subject | Schrödinger type equation | |
dc.subject | Variable exponent Lebesgue–Sobolev spaces | |
dc.subject | variant Fountain theorem | |
dc.title | Infinitely many solutions for a class of stationary Schrödinger equations with non-standard growth | en_US |
dc.type | Article | en_US |