Infinitely many solutions for a class of stationary Schrödinger equations with non-standard growth

dc.authorid57194584788
dc.authorid6507285451
dc.contributor.authorAyazoglu (Mashiyev) R.
dc.contributor.authorAlisoy G.
dc.date.accessioned20.04.201910:49:12
dc.date.accessioned2019-04-20T21:43:05Z
dc.date.available20.04.201910:49:12
dc.date.available2019-04-20T21:43:05Z
dc.date.issued2018
dc.departmentBayburt Üniversitesien_US
dc.description.abstractIn this paper, we study the existence of infinitely many solutions for a class of stationary Schrödinger type equations in ?N involving the p(x)-Laplacian. The non-linearity is superlinear but does not satisfy the Ambrosetti-Rabinowitz type condition. The main arguments are based on the geometry supplied by Fountain Theorem. We also establish a Bartsch type compact embedding theorem for variable exponent spaces. © 2017 Informa UK Limited, trading as Taylor & Francis Group.en_US
dc.identifier.doi10.1080/17476933.2017.1322074
dc.identifier.endpage500
dc.identifier.issn1747-6933
dc.identifier.issue4
dc.identifier.scopus2-s2.0-85021095448en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage482
dc.identifier.urihttps://dx.doi.org/10.1080/17476933.2017.1322074
dc.identifier.urihttps://hdl.handle.net/20.500.12403/388
dc.identifier.volume63
dc.identifier.wosWOS:000423716700003en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.
dc.relation.ispartofComplex Variables and Elliptic Equationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectp(x)-Laplace operator
dc.subjectSchrödinger type equation
dc.subjectVariable exponent Lebesgue–Sobolev spaces
dc.subjectvariant Fountain theorem
dc.subjectp(x)-Laplace operator
dc.subjectSchrödinger type equation
dc.subjectVariable exponent Lebesgue–Sobolev spaces
dc.subjectvariant Fountain theorem
dc.titleInfinitely many solutions for a class of stationary Schrödinger equations with non-standard growthen_US
dc.typeArticleen_US

Dosyalar