Approximating Functions in the Power-Type Weighted Variable Exponent Sobolev Space by the Hardy Averaging Operator

Küçük Resim Yok

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Univ Nis, Fac Sci Math

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

We investigate the problem of approximating function f in the power-type weighted variable exponent Sobolev space W-alpha(.)(r,p(.)) (0, 1), (r = 1, 2,...), by the Hardy averaging operator A (f) (x) = 1/x integral(x)(0) f (t)dt. If the function f lies in the power-type weighted variable exponent Sobolev space W-alpha(.)(r,p(.)) (0, 1), it is shown that parallel to A(f) - f parallel to(p(.),alpha(.)-rp(.)) <= C parallel to f((r))parallel to(p(.),alpha(.)') where C is a positive constant. Moreover, we consider the problem of boundedness of Hardy averaging operator A in power-type weighted variable exponent grand Lebesgue spaces Lp(alpha(.))(p(.),theta) (0, 1). The sufficient criterion established on the power-type weight function alpha(.) and exponent p(.) for the Hardy averaging operator to be bounded in these spaces.

Açıklama

Anahtar Kelimeler

Approximation, Hardy averaging operator, Power-type weighted Sobolev spaces with variable exponent, Power-type weighted grand Lebesgue spaces with variable exponent

Kaynak

Filomat

WoS Q Değeri

Q3

Scopus Q Değeri

Q3

Cilt

36

Sayı

10

Künye