Approximating Functions in the Power-Type Weighted Variable Exponent Sobolev Space by the Hardy Averaging Operator
Küçük Resim Yok
Tarih
2022
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Univ Nis, Fac Sci Math
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
We investigate the problem of approximating function f in the power-type weighted variable exponent Sobolev space W-alpha(.)(r,p(.)) (0, 1), (r = 1, 2,...), by the Hardy averaging operator A (f) (x) = 1/x integral(x)(0) f (t)dt. If the function f lies in the power-type weighted variable exponent Sobolev space W-alpha(.)(r,p(.)) (0, 1), it is shown that parallel to A(f) - f parallel to(p(.),alpha(.)-rp(.)) <= C parallel to f((r))parallel to(p(.),alpha(.)') where C is a positive constant. Moreover, we consider the problem of boundedness of Hardy averaging operator A in power-type weighted variable exponent grand Lebesgue spaces Lp(alpha(.))(p(.),theta) (0, 1). The sufficient criterion established on the power-type weight function alpha(.) and exponent p(.) for the Hardy averaging operator to be bounded in these spaces.
Açıklama
Anahtar Kelimeler
Approximation, Hardy averaging operator, Power-type weighted Sobolev spaces with variable exponent, Power-type weighted grand Lebesgue spaces with variable exponent
Kaynak
Filomat
WoS Q Değeri
Q3
Scopus Q Değeri
Q3
Cilt
36
Sayı
10