Adsorptive properties of As(III) from aqueous solution using magnetic nickel ferrite (NiFe2O4) nanoparticles: Isotherm and kinetic studies
Küçük Resim Yok
Tarih
2017
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Taylor and Francis Inc.
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
As(III) adsorption on NiFe2O4 nanoparticles were systematically investigated by controlling parameters such as stirring rate, pH, initial arsenic concentration, contact duration, temperature, and adsorbent dose. It was observed that the amount of adsorbed arsenic concentration is strongly depended on pH and temperature. The temperature and pH give rise to significant changes in the amount of adsorbed arsenic. As compared with Langmuir and Freundlich isotherms models, the latter is found to be well suited. Pseudo-first order, pseudo-second order, and intraparticle diffusion models were applied to adsorption equilibrium data obtained from the analysis of arsenic with diverse amount of initial concentration. © 2017 Taylor & Francis.
Açıklama
Anahtar Kelimeler
Adsorption, As(III) removal, nanoparticles, nickel ferrite, Adsorption, Adsorption isotherms, Arsenic, Dyes, Ferrite, Isotherms, Nanoparticles, Nickel, Adsorption equilibria, Adsorptive properties, Arsenic concentration, As(III) removal, Controlling parameters, Intraparticle diffusion models, Langmuir and Freundlich isotherms, Nickel ferrite, Solutions, Adsorption, As(III) removal, nanoparticles, nickel ferrite, Adsorption, Adsorption isotherms, Arsenic, Dyes, Ferrite, Isotherms, Nanoparticles, Nickel, Adsorption equilibria, Adsorptive properties, Arsenic concentration, As(III) removal, Controlling parameters, Intraparticle diffusion models, Langmuir and Freundlich isotherms, Nickel ferrite, Solutions
Kaynak
Separation Science and Technology (Philadelphia)
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
52
Sayı
1