Boundedness of solutions to a quasilinear parabolic-parabolic chemotaxis model with variable logistic source
dc.contributor.author | Ayazoglu, Rabil | |
dc.contributor.author | Akkoyunlu, Ebubekir | |
dc.date.accessioned | 2024-10-04T18:48:26Z | |
dc.date.available | 2024-10-04T18:48:26Z | |
dc.date.issued | 2022 | |
dc.department | Bayburt Üniversitesi | en_US |
dc.description.abstract | This paper deals with the higher dimension quasilinear parabolic-parabolic chemotaxis model involving a source term of logistic type u(t) = del . (phi(u)del u) - V . (psi(u)del upsilon) + g(x, u), tau upsilon(t) = del upsilon - upsilon + u, in (x, t) is an element of Omega x (0, T), subject to nonnegative initial data and homogeneous Neumann boundary condition, where Omega is a smooth and bounded domain in R-N, N >= 1 and psi, phi, g are smooth, positive functions satisfying nu s(q) <= psi <= chi s(q), phi >= sigma s(p), p,q is an element of R, nu, chi, sigma > 0 when s >= s(0) >1, g(x, s) <= eta s(k(x))-mu s(rn)(x) for s > 0, eta >= 0, mu > 0 constants and g(x, 0) >= 0, x is an element of Omega, where k, m are measurable functions with 0 <= k(-) := ess(x is an element of Omega )infk (x) <= k(x) <= m(+) := ess(x is an element of Omega)sup k(x) < +infinity, 1 < m(-) := ess(x is an element of Omega)infm (x) <= m(x) <= m(+) := ess(x is an element of Omega)sup m(x)< +infinity. We extend the constant exponents k = {0, 1} , m > 1 which in logistic source term g(s) < eta s(k) - mu s(m) for s > 0, eta >= 0 , > 0 as variable exponents k(.) >= 0, m(.) > 1 with k(+) < m(-) . It is proved that if q = m(-) -1 (critical case) with mu properly large that mu > mu(0) for some mu(0) > 0, then there exists a classical solution which is global in time and bounded. Furthermore, if q < m(-) - 1, we prove that the classical solutions to the above system are uniformly in-time-bounded without restriction on mu. | en_US |
dc.identifier.doi | 10.1007/s00033-022-01847-0 | |
dc.identifier.issn | 0044-2275 | |
dc.identifier.issn | 1420-9039 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-85138314997 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00033-022-01847-0 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12403/3055 | |
dc.identifier.volume | 73 | en_US |
dc.identifier.wos | WOS:000854504900001 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Int Publ Ag | en_US |
dc.relation.ispartof | Zeitschrift Fur Angewandte Mathematik Und Physik | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Chemotaxis | en_US |
dc.subject | Variable logistic source | en_US |
dc.subject | Global boundedness | en_US |
dc.title | Boundedness of solutions to a quasilinear parabolic-parabolic chemotaxis model with variable logistic source | en_US |
dc.type | Article | en_US |