On the boundedness of a B-Riesz potential in the generalized weighted B-Morrey spaces
dc.authorid | 56263218000 | |
dc.authorid | 24341144100 | |
dc.contributor.author | Ayazoglu R. | |
dc.contributor.author | Hasanov J.J. | |
dc.date.accessioned | 20.04.201910:49:12 | |
dc.date.accessioned | 2019-04-20T21:43:36Z | |
dc.date.available | 20.04.201910:49:12 | |
dc.date.available | 2019-04-20T21:43:36Z | |
dc.date.issued | 2016 | |
dc.department | Bayburt Üniversitesi | en_US |
dc.description.abstract | We consider the generalized shift operator associated with the Laplace-Bessel differential operator ? B = i=1 n 2 x i 2 +i=1 k ? i x ix i .$ \Delta -{B}=\sum -{i=1}^{n}\frac{\partial ^2 }{\partial x-i^2} +\sum -{i=1}^{k} \frac{\gamma -i }{x-i}\frac{\partial }{\partial x-i}. $ The maximal operator M ? ${M-{\gamma }}$ (B-maximal operator) and the Riesz potential I ?,? ${I-{\alpha ,\gamma }}$ (B-Riesz potential), associated with the generalized shift operator are investigated. We prove that the B-maximal operator M ? ${M-{\gamma }}$ and the B-singular integral operator are bounded from the generalized weighted B-Morrey space p,? 1 ,?,? (k,+ n )${{\cal M}-{p,\omega -1,\varphi ,\gamma }(\mathbb {R}-{k,+}^{n})}$ to p,? 2 ,?,? (k,+ n )${{\cal M}-{p,\omega -2,\varphi ,\gamma }(\mathbb {R}-{k,+}^{n})}$ for all 1<p<${1 < p < \infty }$ , ?A p,? (k,+ n )${\varphi \in A-{p,\gamma }(\mathbb {R}-{k,+}^{n})}$ . Furthermore, we prove that the B-Riesz potential I ?,? ${I-{\alpha ,\gamma }}$ , 0<?<n+|?|${0<\alpha <n+|\gamma |}$ , is bounded from the generalized weighted B-Morrey space p,? 1 ,?,? (k,+ n )${{\cal M}-{p,\omega -1,\varphi ,\gamma }(\mathbb {R}-{k,+}^{n})}$ to q,? 2 ,?,? (k,+ n )${{\cal M}-{q,\omega -2,\varphi ,\gamma }(\mathbb {R}-{k,+}^{n})}$ , where ?/(n+|?|)=1/p-1/q${{\alpha }/{(n+|\gamma |)}=1/p-1/q}$ , 1<p<(n+|?|)/?${1<p<(n+|\gamma |)/{\alpha }}$ , ?A 1+q/p ' ,? (k,+ n )${\varphi \in A-{1+{q/p^{\prime }},\gamma }(\mathbb {R}-{k,+}^{n})}$ and 1/p+1/p ' =1${{1/p}+{1/p^{\prime }}=1}$ . © 2016 by De Gruyter. | en_US |
dc.identifier.doi | 10.1515/gmj-2016-0009 | |
dc.identifier.endpage | 155 | |
dc.identifier.issn | 1072-947X | |
dc.identifier.issue | 2 | |
dc.identifier.scopus | 2-s2.0-84973926512 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 143 | |
dc.identifier.uri | https://dx.doi.org/10.1515/gmj-2016-0009 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12403/615 | |
dc.identifier.volume | 23 | |
dc.identifier.wos | WOS:000377453300001 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Walter de Gruyter GmbH | |
dc.relation.ispartof | Georgian Mathematical Journal | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | B-maximal operator | |
dc.subject | B-Riesz potential | |
dc.subject | generalized B-Morrey space | |
dc.subject | B-maximal operator | |
dc.subject | B-Riesz potential | |
dc.subject | generalized B-Morrey space | |
dc.title | On the boundedness of a B-Riesz potential in the generalized weighted B-Morrey spaces | en_US |
dc.type | Article | en_US |