Asymmetric reduction of aromatic heterocyclic ketones with bio-based catalyst Lactobacillus kefiri P2
Küçük Resim Yok
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer International Publishing Ag
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Chiral heterocyclic secondary alcohols have received much attention due to their widespread use in pharmaceutical intermediates. In this study, Lactobacillus kefiri P2 biocatalysts isolated from traditional dairy products, were used to catalyze the asymmetric reduction of prochiral ketones to chiral secondary alcohols. Secondary chiral carbinols were obtained by asymmetric bioreduction of different prochiral substrates with results up to>99% enantiomeric excess (ee). (R)-1-(benzofuran-2-yl)ethanol 5a, which can be used in the synthesis of pharmaceuticals such as bufuralols potent nonselective beta-blockers antagonists, Amiodarone (cardiac anti-arrhythmic), and Benziodarone (coronary vasodilator), was produced in gram-scale, high yield and enantiomerically pure form using L. kefiri P2 biocatalysts. The gram-scale production was carried out, and 9.70 g of (R)-5a in enantiomerically pure form was obtained in 96% yield. Also, production of (R)-5a in terms of yield and gram scale through catalytic asymmetric reduction using the biocatalyst was the highest report so far. This is a cost-effective, clean and eco-friendly process for the preparation of chiral secondary alcohols compared to chemical processes. From an environmental and economic perspective, this biocatalytic method has great application potential, making it a green and sustainable way of synthesis.
Açıklama
Anahtar Kelimeler
Asymmetric reduction, Lactobacillus kefiri, Chiral alcohol, Biocatalytic transformation, (R)-1-(benzofuran-2-yl)ethanol
Kaynak
Chemical Papers
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
75
Sayı
3