Free vibration analysis of a laminated composite beam with various boundary conditions
Küçük Resim Yok
Tarih
2014
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Universiti Malaysia Pahang
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
This study presents a free vibration analysis of a laminated composite beam, based on the Euler-Bernoulli beam theory. A numerical model of the laminated composite beam was obtained for various boundary conditions based on different length-to-thickness ratios for a number of layers, using the finite element method. A planar beam bending element with two nodes, each having two degrees of freedom, was chosen according to Euler-Bernoulli beam theory. The natural frequencies of the laminated composite beam were obtained for each case, and presented in such a way as to display the effect of these changes on the natural frequencies. Eight natural frequencies of clamped-free, clamped-clamped (CC) and simple-simple (SS) composite beams were first obtained for different length-to-thickness ratios (Lx /h), numbers of layers, layer angles and for their different positions. It can be seen that natural frequencies decrease for all modes with increasing length-to-thickness ratio in all cases. © Universiti Malaysia Pahang.
Açıklama
Anahtar Kelimeler
Euler-Bernoulli beam, Finite element method, Free vibration, Laminated composite beam, Euler-Bernoulli beam, Finite element method, Free vibration, Laminated composite beam
Kaynak
International Journal of Automotive and Mechanical Engineering
WoS Q Değeri
N/A
Scopus Q Değeri
Q3
Cilt
9
Sayı
1