Investigating the adipokine and cardiac troponin response in experimental thyroid dysfunction
Yükleniyor...
Tarih
2020
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
VETERINARSKI ARHIV
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
This study was conducted to investigate adipokine [Apelin and brain-derived neurotrophic factor (BDNF)] and cardiac troponin (cTnI) response that emerged after adding an essential oil mixture (EOM) (Eucalytus glabutus labii, Thymus vulgaris, Cymbopogon nardus, and Syzygium aromaticum) at different rates to the drinking water of broilers in which thyroid dysfunction (hypo- and hyperthyroidism) had been experimentally induced. In the present study, 150 1-day-old Ross-308 male broiler chicks were used. They were divided into five groups, each with 30 animals. The groups were designed to include five subgroups: control (C), hypothyroid, hypothyroid + 250 ppm EOM, hyperthyroid, and hyperthyroid + 250 ppm EOM, with six animals in each group. At the end of the experiment, Apelin, p-BDNF, cTnI, T3, T4, and thyroid-stimulating hormone (TSH) levels were investigated in blood serum samples obtained by cervical dislocation from four randomly selected animals from each subgroup, making 100 animals in total. It was found that EOM administration resulted in a dose-dependent increase in p-BDNF and apelin levels, and a decrease in T4 levels in the experimentally induced hypo- and hyper-thyroidism groups, but did not affect T3 and cTnI levels. Conversely, an increase in TSH level was observed in the hypothyroidism groups, whereas a decrease was observed in groups with hyperthyroidism. This study is the first to examine adipokine (Apelin and BDNF) and cTnI response to EOM administration in thyroid dysfunction.
Açıklama
Anahtar Kelimeler
apelin; brain-derived neurotrophic factor; cardiac troponin; essential oil mixture; thyroid dysfunction;
Kaynak
VETERINARSKI ARHIV
WoS Q Değeri
Q4
Scopus Q Değeri
Cilt
90
Sayı
3
Künye
AHMED, A., A. B. D. AL-RAOF, M. YASSER (2018): Role
of changes in some adipokines with obesity in relation to
thyroid function in early diagnosed patients with subclinical
hypothyroidism. Med. J. Cairo. Univ. 86,4657-4665.
DOI: 10.21608/MJCU.2018.65748
AKHONDALI, Z., M. BADAVI, M. DIANAT, F. FARAJI
(2015): Co-administration of Apelin and T4 protects
inotropic and chronotropic changes occurring in
hypothyroid rats. Arq. Bras. Cardiol. 105, 235-240.
DOI: 10.5935/abc.20150086
AL WAKEEL, R. A., M. F. SAAD, A. ABDEL AZEEZ, F.
ELKHIAT, M. SHUKRY (2019): Both experimental hypoand
hyper-thyroidism exacerbate the adverse effects of
chronic heat stress in broilers. Br. Poult. Sci. 3, 1-10.
DOI:10.1080/00071668.2019.1602248
AOAC (2005): Official Methods of Analysis of AOAC
International. 18th ed. Rockville, MD, USA: Association of
Official Analytical Chemists.
BENRASIS, A., E. CHMIELNICKI, K. LERNER., D. ROH.,
S. A. GOLDMAN (2001): Adenoviral brain-derived
neurotrophic factor induces both neostriatal and olfactory
neuronal recruitment from endogenous progenitor cells in
the adult forebrain. J. Neurosci. 21, 6718-6731.
DOI: 10.1385/MN:31:1-3:231
BIONDI, B. (2007): Cardiovascular effects of mild
hypothyroidism. Thyroid. 17, 625-630.
DOI: 10.1089/thy.2007.0158
CORTÉS, C., E. EUGENIN, E. ALIAGA, L.J. CARREÑO,
S.M. BUENO, P.A.D. GONZALEZ, C.A. ROSENTHAL
(2012): Hypothyroidism in the adult rat causes incremental
changes in brain-derived neurotrophic factor, neuronal
and astrocyte apoptosis, gliosis, and deterioration of
postsynaptic density. Thyroid. 22, 951-963.
DOI: 10.1089/thy.2010.0400
DE ESCOBAR, G. M., M. J. OBREGÓN, F. E. DEL REY
(2004): Maternal thyroid hormones early in pregnancy and
fetal brain development. Best Pract. Res. Clin. Endocrinol.
Metab.18, 225-248.
DOI: 10.1016/j.beem.2004.03.012
FULGENZI, G., F. TOMASSONI-ARDORI, L. BABINI, J.
BECKER, C. BARRICK, S. PUVEREL, L. TESSAROLLO
(2015): BDNF modulates heart contraction force and longterm
homeostasis through truncated TrkB. T1 receptor
activation. J. Cell Biol. 210, 1003-1012.
DOI: 10.1083/jcb.201502100
GERDES, A. M., A. K. OJAMAA (2011): Thyroid hormone
and cardioprotection. Compr. Physiol. 6, 1199-1219.
DOI: 10.1002/cphy.c150012
GREDILLA, R., G. BARJA, M. LÓPEZ-TORRES (2001):
Thyroid hormone-induced oxidative damage on lipids,
glutathione and DNA in the mouse heart. Free Radic. Res.
35, 417-425.
DOI:10.1080/10715760100300931
GİLBERT, M. E., S. M. LASLEY (2013): Developmental
thyroid hormone insufficiency and brain development:
a role for brain-derived neurotrophic factor (BDNF).
Neuroscience 239, 253-270.
DOI: 10.1016/j.neuroscience.2012.11.022
GÜREL, A., A. DOĞANTEKIN, Y. ÖZKAN, S. AYDIN
(2015): Serum apelin levels in patients with thyroid
dysfunction. Int. J. Clin. Exp. Med. 8, 16394-16398.
PMID: 26629164
HOSSEIN, N., P. KAZEM, D. DELARAM, H.R. NASIM, N.
MOHAMMAD (2018): Effect of maternal hypothyroidism
on bdnf expression in developing rat brain. J. Mol. Biol.
Res. 8, 31-40.
DOI: 10.5539/jmbr.v8n1p31
HULBERT, A.J. (2000): Thyroid hormones and their effects: A
new perspective. Biol. Rev. 75, 519-631.
DOI: 10.1017/s146479310000556x
B. Bayraktar et al.: Investigating the adipokine and cardiac troponin response ın experimental thyroid dysfunction
Vet. arhiv 90 (3), 289-296, 2020 295
İLİ, P. (2003): Chemical contents of some medicinal plants
and its effects on animals. Master’s Thesis, Pamukkale
University Institute of Science (in Turkish).
JANSEN VAN VUREN, E., L. MALAN, R. VON KÄNEL,
M. MAGNUSSON, L. LAMMERTYN, N. T. MALAN
(2019): BDNF increases associated with constant troponin
T levels and may protect against poor cognitive interference
control: The SABPA prospective study. Eur. J. Clin. Invest.
49, 1-10.
DOI: 10.1111/eci.13116
KERTES, D. A., S. S. BHATT, H. S. KAMIN, D. A. HUGHES,
N. C. RODNEY, C. J. MULLIGAN (2017): BNDF
methylation in mothers and newborns is associated with
maternal exposure to war trauma. Clin Epigenetics. 9, 68-
90. PMID: 28680507
LI, J., K. ABE, A. MILANESI, Y.Y. LIU, G.A. BRENT
(2019): Thyroid hormone protects primary cortical neurons
exposed to hypoxia by reducing dna methylation and
apoptosis. Endocrinology 160, 2243-2256.
DOI: 10.1210/en.2019-00125.
LİU, M., W. LİU, P. ZHANG, J. AN, G. WANG (2019): Left
ventricular myocardial T1 mapping and strain analysis
evaluate cardiac abnormality in hypothyroidism. Int. J.
Cardiovasc Imaging. 35, 507-515.
DOI: 10.1007/s10554-018-1456-4
LOMMATZSCH, M., D. ZİNGLER, K. SCHUHBAECK, K.
SCHLOETCKE, C. ZİNGLER, P. SCHUFF-WERNER,
J. C. VİRCHOW (2005): The impact of age, weight and
gender on BDNF levels in human platelets and plasma.
Neurobiol. Aging 26, 115-123.
DOI: 10.1016/j.neurobiolaging.2004.03.002
MATSUZAWA, Y. (2005): Adipocytokines and metabolic
syndrome. Semin. Vasc. Med. 5, 34-38.
DOI: 10.1055/s-2005-871744
McANINCH, E. A., A. C. BIANCO (2014): Thyroid hormone
signaling in energy homeostasis and energy metabolism.
Ann. Ny. Acad Sci.1311,77-87.
DOI: 10.1111/nyas.12374
MONNERET, D., M. GELLERSTEDT, F. ROCHE, D.
BONNEFONT-ROUSSELOT (2019): Outlier removal
methods for skewed data: impact on age-specific highsensitive
cardiac troponin T 99th percentiles. Clin. Chem.
Lab. Med. 57, e244-e247.
DOI: 10.1515/cclm-2018-1366
MULLUR, R., Y. Y. LIU, G.A. BRENT (2014):Thyroid
hormone regulation of metabolism. Physiol. Rev. 94, 355-
382.
DOI: 10.1152/physrev.00030.2013
PANTOS, C., I. MOUROUZIS (2015): Translating thyroid
hormone effects into clinical practice: the relevance of
thyroid hormone receptor α1 in cardiac repair. Heart Fail
Rev. 20, 273-282.
DOI: 10.1007/s10741-014-9465-4
PEEBLES, E. D., H. İ. MARKS (1991): Effects of selection on
plasma thyroxine concentrations i̇n Japanese Quail under
thiouracil and protein stress. Poult. Sci. 70, 641-650.
DOI: 10.3382/ps.0700641
PEEBLES, E. D., E. H. MILLER, C. R. BOYLE, J. D. BRAKE,
M.A. LATOUR (1994): Effects of dietary thiouracil on
thyroid activity, egg production, and eggshell quality in
commercial layers. Poult. Sci.73, 1829-1837.
DOI: 10.3382/ps.0731829
PEEBLES, E. D., E. H. MILLER, J. D. BRAKE, C. D.
SCHULTZ (1992): Effects of ascorbic acid on plasma
thyroxine concentrations and eggshell quality of leghom
chickens treated with dietary thiouracil. Poult Sci. 71, 553-
559.
DOI: 10.3382/ps.0710553
SANTISTEBAN, P., J. BERNAL (2005): Thyroid development
and effect on the nervous system. Rev. Endocr. Metab. Dis.
6, 217-228.
DOI: 10.1007/s11154-005-3053-9
SARANAC, L., S. ZIVANOVIC, B. BJELAKOVIC, H.
STAMENKOVIC, M. NOVAK, B. KAMENOV (2011):
Why is the thyroid so prone to autoimmune disease?.
Horm. Res. Paediatr.75, 157-165.
DOI: 10.1159/000324442
SCHMIDT, R. E., D. R. REAVILL (2008): The avian thyroid
gland. Vet. Clin. North Am. Exot. Anim. Pract. 11, 15-23.
DOI: 10.1016/j.cvex.2007.09.008
SHAHRIVAR, F. F., M. BADAVI, M. DIANAT, A. MARD,
A. AHANGARPOUR, M. HEDAYATI, A. SAMARBAFZADEH
(2016): Comparison of therapeutic effects of
L-Thyroxin, apelin and a combination of both on antioxidant
enzymes in the heart of PTU-induced hypothyroid rats.
Braz. Arch. Biol. Technol.59,1-8.
DOI: 10.1590/1678-4324-2016150585
STEWART, D. (2005): The chemistry of essential oils made
simple: God's love manifest in molecules. 1th ed., Care
Marble Hill. Mo., USA, pp. 55-59.
SZKUDLINSKI, M. W., V. FREMONT, C. RONIN, B. D.
WEINTRAUB (2002): Thyroid-stimulating hormone and
thyroid-stimulating hormone receptor structure-function
relationships. Physiol. Rev. 82, 473-502.
DOI: 10.1152/physrev.00031.2001
SZOKODI, I., P. TAVI, G. FÖLDES, S. VOUTILAINENMYLLYLÄ,
M. ILVES, H. TOKOLA, H. RUSKOAHO
(2002): Apelin, the novel endogenous ligand of the orphan
receptor APJ, regulates cardiac contractility. Circ. Res.91,
434-440.
DOI: 10.1161/01.res.0000033522.37861.69
TATEMOTO, K., M. HOSOYA, Y. HABATA, R. FUJII, T.
KAKEGAWA, M. X. ZOU, T. KUROKAWA (1998):
Isolation and characterization of a novel endogenous
B. Bayraktar et al.: Investigating the adipokine and cardiac troponin response ın experimental thyroid dysfunction
296 Vet. arhiv 90 (3), 289-296, 2020
peptide ligand for the human APJ receptor. Biochem.
Bioph. Res. Co. 251, 471-476.
DOI: 10.1006/bbrc.1998.9489
TATEMOTO, K., K. TAKAYAMA, M. X. ZOU, I. KUMAKI,
W. ZHANG, K. KUMANO, M. FUJIMIYA (2001): The
novel peptide apelin lowers blood pressure via a nitric
oxide-dependent mechanism. Regul. Pept. 99, 87-92.
DOI: 10.1016/s0167-0115(01)00236-1
TEKIEH, M. F., F. ESFAHANIAN, F. EMADI, M. GHOLAMI,
E. EMARATKAR (2019): Effect of Nigella sativa on
thyroid function in patients with hypothyroidism treated
with levothyroxine: a triple-blind randomized controlled
trial. Med. Sci. 23, 606-614. PMID: 27852303
UNDHAD, V. V., D. T. FEFAR, B. M. JIVANI, H. GUPTA, D.
J. GHODASARA, B. P. JOSHI, K. S. PRAJAPATI (2012):
Cardiac troponin: an emerging cardiac biomarker in animal
health. Vet. World. 5, 508-511.
DOI: 10.5455/vetworld.2012.508-511
VENDITTI, P., S. DI MEO (2006): Thyroid hormone-induced
oxidative stress. Cell Mol. Life Sci. 63, 414-434.
DOI: 10.1007/s00018-005-5457-9
VON HAFE, M., J. S. NEVES, C. VALE, M. BORGESCANHA,
A. LEITE-MOREIRA (2019): The impact of
thyroid hormone dysfunction on ischemic heart disease.
Endocr Connect. 8, R76-R90. PMID: 30959486
WARNER, A., J. MITTAG (2012): Thyroid hormone and the
central control of homeostasis. J. Mol. Endocrinol. 49,
R29-R35.
DOI: 10.1530/JME-12-0068
WILLIAMS, G. R (2008): Neurodevelopmental and
neurophysiological actions of thyroid hormone. J.
Neuroendocrinol. 20, 784-794.
DOI: 10.1111/j.1365-2826.2008.01733.x
YANG, N., T. LI, J. CHENG, Q. TUO, J. SHEN (2019): Role
of apelin/APJ system in hypothalamic-pituitary axis. Clin
Chim Acta. 499, 149-153.
DOI: 10.1016/j.cca.2019.09.011
YASAR, H. Y., M. DEMIRPENCE, A. COLAK, L.
YURDAKUL, M. ZEYTİNLİ, H. TURKON, F. EKİNCİ,
A.GÜNASLAN, E. YASAR (2019). Serum iris and apelin
levels and markers of atherosclerosis in patients with
subclinical hypothyroidism. Arch. Endocrinol. Metab. 63,
16-21 (In Turkish).
DOI: 10.20945/2359-3997000000106
ZIGOVA, T., V. PENCEA, S. J. WIEGAND, M. B. LUSKIN
(1998): Intraventricular administration of BDNF increases
the number of newly generated neurons in the adult
olfactory bulb. Mol. Cell Neurosci. 11, 234-245.
DOI: 10.1006/mcne.1998.0684