Investigating the adipokine and cardiac troponin response in experimental thyroid dysfunction
dc.authorid | 0000-0002-2335-9089 | en_US |
dc.contributor.author | Bayraktar,Bülent,Tekce, Emre,Takma, Çiğdem, Bayraktar, Sevil,Kılınç Aşkın, Ayten, Ülker, Ufuk, Kurtdede, Efe | |
dc.date.accessioned | 2020-11-25T12:01:52Z | |
dc.date.available | 2020-11-25T12:01:52Z | |
dc.date.issued | 2020 | en_US |
dc.department | Fakülteler, Sağlık Bilimleri Fakültesi, Fizyoterapi ve Rehabilitasyon Bölümü | en_US |
dc.description.abstract | This study was conducted to investigate adipokine [Apelin and brain-derived neurotrophic factor (BDNF)] and cardiac troponin (cTnI) response that emerged after adding an essential oil mixture (EOM) (Eucalytus glabutus labii, Thymus vulgaris, Cymbopogon nardus, and Syzygium aromaticum) at different rates to the drinking water of broilers in which thyroid dysfunction (hypo- and hyperthyroidism) had been experimentally induced. In the present study, 150 1-day-old Ross-308 male broiler chicks were used. They were divided into five groups, each with 30 animals. The groups were designed to include five subgroups: control (C), hypothyroid, hypothyroid + 250 ppm EOM, hyperthyroid, and hyperthyroid + 250 ppm EOM, with six animals in each group. At the end of the experiment, Apelin, p-BDNF, cTnI, T3, T4, and thyroid-stimulating hormone (TSH) levels were investigated in blood serum samples obtained by cervical dislocation from four randomly selected animals from each subgroup, making 100 animals in total. It was found that EOM administration resulted in a dose-dependent increase in p-BDNF and apelin levels, and a decrease in T4 levels in the experimentally induced hypo- and hyper-thyroidism groups, but did not affect T3 and cTnI levels. Conversely, an increase in TSH level was observed in the hypothyroidism groups, whereas a decrease was observed in groups with hyperthyroidism. This study is the first to examine adipokine (Apelin and BDNF) and cTnI response to EOM administration in thyroid dysfunction. | en_US |
dc.identifier.citation | AHMED, A., A. B. D. AL-RAOF, M. YASSER (2018): Role of changes in some adipokines with obesity in relation to thyroid function in early diagnosed patients with subclinical hypothyroidism. Med. J. Cairo. Univ. 86,4657-4665. DOI: 10.21608/MJCU.2018.65748 AKHONDALI, Z., M. BADAVI, M. DIANAT, F. FARAJI (2015): Co-administration of Apelin and T4 protects inotropic and chronotropic changes occurring in hypothyroid rats. Arq. Bras. Cardiol. 105, 235-240. DOI: 10.5935/abc.20150086 AL WAKEEL, R. A., M. F. SAAD, A. ABDEL AZEEZ, F. ELKHIAT, M. SHUKRY (2019): Both experimental hypoand hyper-thyroidism exacerbate the adverse effects of chronic heat stress in broilers. Br. Poult. Sci. 3, 1-10. DOI:10.1080/00071668.2019.1602248 AOAC (2005): Official Methods of Analysis of AOAC International. 18th ed. Rockville, MD, USA: Association of Official Analytical Chemists. BENRASIS, A., E. CHMIELNICKI, K. LERNER., D. ROH., S. A. GOLDMAN (2001): Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J. Neurosci. 21, 6718-6731. DOI: 10.1385/MN:31:1-3:231 BIONDI, B. (2007): Cardiovascular effects of mild hypothyroidism. Thyroid. 17, 625-630. DOI: 10.1089/thy.2007.0158 CORTÉS, C., E. EUGENIN, E. ALIAGA, L.J. CARREÑO, S.M. BUENO, P.A.D. GONZALEZ, C.A. ROSENTHAL (2012): Hypothyroidism in the adult rat causes incremental changes in brain-derived neurotrophic factor, neuronal and astrocyte apoptosis, gliosis, and deterioration of postsynaptic density. Thyroid. 22, 951-963. DOI: 10.1089/thy.2010.0400 DE ESCOBAR, G. M., M. J. OBREGÓN, F. E. DEL REY (2004): Maternal thyroid hormones early in pregnancy and fetal brain development. Best Pract. Res. Clin. Endocrinol. Metab.18, 225-248. DOI: 10.1016/j.beem.2004.03.012 FULGENZI, G., F. TOMASSONI-ARDORI, L. BABINI, J. BECKER, C. BARRICK, S. PUVEREL, L. TESSAROLLO (2015): BDNF modulates heart contraction force and longterm homeostasis through truncated TrkB. T1 receptor activation. J. Cell Biol. 210, 1003-1012. DOI: 10.1083/jcb.201502100 GERDES, A. M., A. K. OJAMAA (2011): Thyroid hormone and cardioprotection. Compr. Physiol. 6, 1199-1219. DOI: 10.1002/cphy.c150012 GREDILLA, R., G. BARJA, M. LÓPEZ-TORRES (2001): Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart. Free Radic. Res. 35, 417-425. DOI:10.1080/10715760100300931 GİLBERT, M. E., S. M. LASLEY (2013): Developmental thyroid hormone insufficiency and brain development: a role for brain-derived neurotrophic factor (BDNF). Neuroscience 239, 253-270. DOI: 10.1016/j.neuroscience.2012.11.022 GÜREL, A., A. DOĞANTEKIN, Y. ÖZKAN, S. AYDIN (2015): Serum apelin levels in patients with thyroid dysfunction. Int. J. Clin. Exp. Med. 8, 16394-16398. PMID: 26629164 HOSSEIN, N., P. KAZEM, D. DELARAM, H.R. NASIM, N. MOHAMMAD (2018): Effect of maternal hypothyroidism on bdnf expression in developing rat brain. J. Mol. Biol. Res. 8, 31-40. DOI: 10.5539/jmbr.v8n1p31 HULBERT, A.J. (2000): Thyroid hormones and their effects: A new perspective. Biol. Rev. 75, 519-631. DOI: 10.1017/s146479310000556x B. Bayraktar et al.: Investigating the adipokine and cardiac troponin response ın experimental thyroid dysfunction Vet. arhiv 90 (3), 289-296, 2020 295 İLİ, P. (2003): Chemical contents of some medicinal plants and its effects on animals. Master’s Thesis, Pamukkale University Institute of Science (in Turkish). JANSEN VAN VUREN, E., L. MALAN, R. VON KÄNEL, M. MAGNUSSON, L. LAMMERTYN, N. T. MALAN (2019): BDNF increases associated with constant troponin T levels and may protect against poor cognitive interference control: The SABPA prospective study. Eur. J. Clin. Invest. 49, 1-10. DOI: 10.1111/eci.13116 KERTES, D. A., S. S. BHATT, H. S. KAMIN, D. A. HUGHES, N. C. RODNEY, C. J. MULLIGAN (2017): BNDF methylation in mothers and newborns is associated with maternal exposure to war trauma. Clin Epigenetics. 9, 68- 90. PMID: 28680507 LI, J., K. ABE, A. MILANESI, Y.Y. LIU, G.A. BRENT (2019): Thyroid hormone protects primary cortical neurons exposed to hypoxia by reducing dna methylation and apoptosis. Endocrinology 160, 2243-2256. DOI: 10.1210/en.2019-00125. LİU, M., W. LİU, P. ZHANG, J. AN, G. WANG (2019): Left ventricular myocardial T1 mapping and strain analysis evaluate cardiac abnormality in hypothyroidism. Int. J. Cardiovasc Imaging. 35, 507-515. DOI: 10.1007/s10554-018-1456-4 LOMMATZSCH, M., D. ZİNGLER, K. SCHUHBAECK, K. SCHLOETCKE, C. ZİNGLER, P. SCHUFF-WERNER, J. C. VİRCHOW (2005): The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol. Aging 26, 115-123. DOI: 10.1016/j.neurobiolaging.2004.03.002 MATSUZAWA, Y. (2005): Adipocytokines and metabolic syndrome. Semin. Vasc. Med. 5, 34-38. DOI: 10.1055/s-2005-871744 McANINCH, E. A., A. C. BIANCO (2014): Thyroid hormone signaling in energy homeostasis and energy metabolism. Ann. Ny. Acad Sci.1311,77-87. DOI: 10.1111/nyas.12374 MONNERET, D., M. GELLERSTEDT, F. ROCHE, D. BONNEFONT-ROUSSELOT (2019): Outlier removal methods for skewed data: impact on age-specific highsensitive cardiac troponin T 99th percentiles. Clin. Chem. Lab. Med. 57, e244-e247. DOI: 10.1515/cclm-2018-1366 MULLUR, R., Y. Y. LIU, G.A. BRENT (2014):Thyroid hormone regulation of metabolism. Physiol. Rev. 94, 355- 382. DOI: 10.1152/physrev.00030.2013 PANTOS, C., I. MOUROUZIS (2015): Translating thyroid hormone effects into clinical practice: the relevance of thyroid hormone receptor α1 in cardiac repair. Heart Fail Rev. 20, 273-282. DOI: 10.1007/s10741-014-9465-4 PEEBLES, E. D., H. İ. MARKS (1991): Effects of selection on plasma thyroxine concentrations i̇n Japanese Quail under thiouracil and protein stress. Poult. Sci. 70, 641-650. DOI: 10.3382/ps.0700641 PEEBLES, E. D., E. H. MILLER, C. R. BOYLE, J. D. BRAKE, M.A. LATOUR (1994): Effects of dietary thiouracil on thyroid activity, egg production, and eggshell quality in commercial layers. Poult. Sci.73, 1829-1837. DOI: 10.3382/ps.0731829 PEEBLES, E. D., E. H. MILLER, J. D. BRAKE, C. D. SCHULTZ (1992): Effects of ascorbic acid on plasma thyroxine concentrations and eggshell quality of leghom chickens treated with dietary thiouracil. Poult Sci. 71, 553- 559. DOI: 10.3382/ps.0710553 SANTISTEBAN, P., J. BERNAL (2005): Thyroid development and effect on the nervous system. Rev. Endocr. Metab. Dis. 6, 217-228. DOI: 10.1007/s11154-005-3053-9 SARANAC, L., S. ZIVANOVIC, B. BJELAKOVIC, H. STAMENKOVIC, M. NOVAK, B. KAMENOV (2011): Why is the thyroid so prone to autoimmune disease?. Horm. Res. Paediatr.75, 157-165. DOI: 10.1159/000324442 SCHMIDT, R. E., D. R. REAVILL (2008): The avian thyroid gland. Vet. Clin. North Am. Exot. Anim. Pract. 11, 15-23. DOI: 10.1016/j.cvex.2007.09.008 SHAHRIVAR, F. F., M. BADAVI, M. DIANAT, A. MARD, A. AHANGARPOUR, M. HEDAYATI, A. SAMARBAFZADEH (2016): Comparison of therapeutic effects of L-Thyroxin, apelin and a combination of both on antioxidant enzymes in the heart of PTU-induced hypothyroid rats. Braz. Arch. Biol. Technol.59,1-8. DOI: 10.1590/1678-4324-2016150585 STEWART, D. (2005): The chemistry of essential oils made simple: God's love manifest in molecules. 1th ed., Care Marble Hill. Mo., USA, pp. 55-59. SZKUDLINSKI, M. W., V. FREMONT, C. RONIN, B. D. WEINTRAUB (2002): Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiol. Rev. 82, 473-502. DOI: 10.1152/physrev.00031.2001 SZOKODI, I., P. TAVI, G. FÖLDES, S. VOUTILAINENMYLLYLÄ, M. ILVES, H. TOKOLA, H. RUSKOAHO (2002): Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ. Res.91, 434-440. DOI: 10.1161/01.res.0000033522.37861.69 TATEMOTO, K., M. HOSOYA, Y. HABATA, R. FUJII, T. KAKEGAWA, M. X. ZOU, T. KUROKAWA (1998): Isolation and characterization of a novel endogenous B. Bayraktar et al.: Investigating the adipokine and cardiac troponin response ın experimental thyroid dysfunction 296 Vet. arhiv 90 (3), 289-296, 2020 peptide ligand for the human APJ receptor. Biochem. Bioph. Res. Co. 251, 471-476. DOI: 10.1006/bbrc.1998.9489 TATEMOTO, K., K. TAKAYAMA, M. X. ZOU, I. KUMAKI, W. ZHANG, K. KUMANO, M. FUJIMIYA (2001): The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul. Pept. 99, 87-92. DOI: 10.1016/s0167-0115(01)00236-1 TEKIEH, M. F., F. ESFAHANIAN, F. EMADI, M. GHOLAMI, E. EMARATKAR (2019): Effect of Nigella sativa on thyroid function in patients with hypothyroidism treated with levothyroxine: a triple-blind randomized controlled trial. Med. Sci. 23, 606-614. PMID: 27852303 UNDHAD, V. V., D. T. FEFAR, B. M. JIVANI, H. GUPTA, D. J. GHODASARA, B. P. JOSHI, K. S. PRAJAPATI (2012): Cardiac troponin: an emerging cardiac biomarker in animal health. Vet. World. 5, 508-511. DOI: 10.5455/vetworld.2012.508-511 VENDITTI, P., S. DI MEO (2006): Thyroid hormone-induced oxidative stress. Cell Mol. Life Sci. 63, 414-434. DOI: 10.1007/s00018-005-5457-9 VON HAFE, M., J. S. NEVES, C. VALE, M. BORGESCANHA, A. LEITE-MOREIRA (2019): The impact of thyroid hormone dysfunction on ischemic heart disease. Endocr Connect. 8, R76-R90. PMID: 30959486 WARNER, A., J. MITTAG (2012): Thyroid hormone and the central control of homeostasis. J. Mol. Endocrinol. 49, R29-R35. DOI: 10.1530/JME-12-0068 WILLIAMS, G. R (2008): Neurodevelopmental and neurophysiological actions of thyroid hormone. J. Neuroendocrinol. 20, 784-794. DOI: 10.1111/j.1365-2826.2008.01733.x YANG, N., T. LI, J. CHENG, Q. TUO, J. SHEN (2019): Role of apelin/APJ system in hypothalamic-pituitary axis. Clin Chim Acta. 499, 149-153. DOI: 10.1016/j.cca.2019.09.011 YASAR, H. Y., M. DEMIRPENCE, A. COLAK, L. YURDAKUL, M. ZEYTİNLİ, H. TURKON, F. EKİNCİ, A.GÜNASLAN, E. YASAR (2019). Serum iris and apelin levels and markers of atherosclerosis in patients with subclinical hypothyroidism. Arch. Endocrinol. Metab. 63, 16-21 (In Turkish). DOI: 10.20945/2359-3997000000106 ZIGOVA, T., V. PENCEA, S. J. WIEGAND, M. B. LUSKIN (1998): Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol. Cell Neurosci. 11, 234-245. DOI: 10.1006/mcne.1998.0684 | en_US |
dc.identifier.doi | 10.24099/vet.arhiv.0783 | |
dc.identifier.endpage | 296 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 289 | en_US |
dc.identifier.uri | https://intranet.vef.hr/vetarhiv/index.php?p1=item&p2=2020&p3=90&p4=3&p5=&p6=8 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12403/2184 | |
dc.identifier.volume | 90 | en_US |
dc.identifier.wos | WOS:000545026900008 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.institutionauthor | Bayraktar, Bülent | |
dc.institutionauthor | Tekce, Emre | |
dc.language.iso | en | en_US |
dc.publisher | VETERINARSKI ARHIV | en_US |
dc.relation.ispartof | VETERINARSKI ARHIV | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | apelin; brain-derived neurotrophic factor; cardiac troponin; essential oil mixture; thyroid dysfunction; | en_US |
dc.title | Investigating the adipokine and cardiac troponin response in experimental thyroid dysfunction | en_US |
dc.type | Article | en_US |