Effect of probiotic supplementation on adipokine profile (visfatin, adiponectin and chemerin), intestinal (citrulline) and thyroid functions in Japanese quails subjected to heat stress

Küçük Resim Yok

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

European Poultry Science

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Abstract In this study, we aimed to determine the effect of probiotic supplementation of Lactobacillus reuteri E81 (LRE; 200, 400, 600 mg/kg) to the diets of Japanese quail ( Coturnix coturnix japonica) reared under heat stress (HS) on serum adipokine (visfatin, adiponectin and chemerin), intestinal (citrulline) and thyroid hormone levels. On day 7 of the trial, the animals were assigned to 8 groups [Control temperature (CT): control (C, without LRE supplementation), LRE-200, LRE-400 and LRE-600 and HS: control (HSC), SLRE-200, SLRE-400 and SLRE-600], each composed of 56 animals of equal body weight. Each group was divided into 4 subgroups withg 14 animals per compartment. During the experiments, the temperature applied to the CT-groups C, LRE-200, LRE-400 and LRE-600 was 25°C and to the HS-groups HSC, SLRE-200, SLRE-400 and SLRE-600 was 37°C. At the end of the study (days 21 and 42), a dose-dependent decrease in citrulline, chemerin, adiponectin, and thyroid hormones and a dose-dependent increase in the visfatin hormone level (p < 0.01) due to LRE supplementation were observed in the HS and CT groups compared to its control. In conclusion, the present study showed that dietary supplementation with 600 mg/kg of LRE affected serum chemerin, adiponectin, T3, T4, TSH and visfatin levels in Japanese quail raised under heat stress (p < 0.001). Key words Japanese Quail; probiotic; heat stress; adiponectin; chemerin; visfatin; citrulline; T3; T4; TSH Zusammenfassung In dieser Studie wurde der Effekt einer probiotischen Futterergänzung durch Lactobacillus reuteri E81 (LRE, 200, 400, 600 mg/kg) auf die Serumwerte von Adipokinen (Visfatin, Adiponectin und Chemerin), Darm- (Citrullin) und Schilddrüsenhormone bei japanischen Wachteln ( Coturnix coturnix japonica) unter Hitzestress (HS) untersucht. Am 7. Lebenstag wurden die Versuchstiere auf 8 Gruppen verteilt [Kontrolltemperatur (CT): Kontrolle (C), LRE-200, LRE-400 und LRE-600 und HS: Kontrolle (HSC), SLRE-200, SLRE-400 und SLRE-600], mit jeweils 56 Tieren mit gleichem Körpergewicht. Jede Gruppe wurde in 4 Untergruppen unterteilt, mit jeweils 14 Tieren pro Gruppe. Während der Experimente betrug die Temperatur in den CT-Gruppen C, LRE-200, LRE-400 und LRE-600 25°C und in den HS-Gruppen HSC, SLRE-200, SLRE-400 und SLRE-600 37°C. Am Ende der Studie (Tag 21 und 42) wurden infolge der LRE-Futterergänzung in den HS- und CT-Gruppen im Vergleich zur jeweiligen Kontrollgruppe eine dosisabhängige Abnahme der Citrullin-, Chemerin-, Adiponectin- und Schilddrüsenhormonspiegel und ein dosisabhängiger Anstieg des Visfatin-Hormonspiegels (p < 0,01) festgestellt. Als Schlussfolgerung ergibt sich aus der vorliegenden Studie, dass eine Nahrungsergänzung mit 600 mg/kg LRE bei Hitzestress die Chemerin-, Adiponectin-, T3-, T4-, TSH- und Visfatin-Spiegel im Serum von Japanischen Wachteln wirksam beeinflussen kann (p < 0,001). Stichworte Japanische Wachtel; Probiotikum; Hitzestress; Adiponectin; Chemerin; Visfatin; Citrullin; T3; T4; TSH

Açıklama

Anahtar Kelimeler

Japanese Quail; probiotic; heat stress; adiponectin; chemerin; visfatin; citrulline; T3; T4; TSH

Kaynak

European Poultry Science

WoS Q Değeri

Q4

Scopus Q Değeri

Q3

Cilt

2020

Sayı

84

Künye

AL-AZRAQI, A.A, 2008: Pattern of leptin secretion and oxidative markers in heat-stressed pigeons. Int. J. Poult. Sci. 7, 1174-1176. AL‐DAWOOD, A, 2017: Effect of heat stress on adipokines and some blood metabolites in goats from Jordan. Anim. Sci. J. 88, 356-363. AL-FATAFTAH, A.R., A. ABDELQADER, 2014: Effects of dietary Bacillus subtilis on heat-stressed broilers performance, intestinal morphology and microflora composition. Anim. Feed Sci. Technol.198, 279-285. AOAC, 2005: Official Methods of Analysis, 16th Edition. Association analytical chemists, Arlington, VA, USA. AWAD, W.A., K. GHAREEB, S. ABDEL-RAHEEM, J. BÖHM, 2009: Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult. Sci. 88, 49-56. BARBE, A., A. BONGRANI, N. MELLOUK, A. ESTIENNE, P. KUROWSKA, J. GRANDHAYE, J. DUPONT, 2019: Mechanisms of adiponectin action in fertility: An overview from gametogenesis to gestation in humans and animal models in normal and pathological Conditions. Int. J. Mol. Sci. 20, 1526. BAXTER, M.F., J.D. LATORRE, S. DRIDI, R. MERINO-GUZMAN, X. HERNANDEZ-VELASCO, B.M. HARGIS, G.TELLEZ-ISAIAS, 2019: Identification of serum biomarkers for intestinal integrity in a broiler chicken malabsorption model. Front Vet Sci. 6, 144-150. BAYRAKTAR, B, 2018: Antidiyabetik, Proinflamatuvar, Kardiyoprotektif Etkiye Sahip Bir Adipositokin Visfatin Hormonun Fizyolojik Sistemler Üzerindeki Etkisinin İncelenmesi.(içinde):Temel Sağlık Bilimleri. Oğuz Ö (editör).Cilt 1. Baskı 1. s.163-168. Akademisyen Yay, Ankara, Türkiye. BAYRAKTAR, B., E. TEKCE, 2018: Deneysel Olarak Sıcaklık Stresi Oluşturulan Broilerde Farklı Oranlarda Kullanılan Bazı Bitkisel Ekstrelerin Serum Demir Seviyesine Etkisinin İncelenmesi. J. Trad. Complement Med. 1, 50-55. BEHROUZ, V., S. JAZAYERI, N. ARYAEIAN, M.J. ZAHEDI, F. HOSSEINI, 2017: Effects of probiotic and prebiotic supplementation on leptin, adiponectin, and glycemic parameters in non-alcoholic fatty liver disease: a randomized clinical trial. Middle East J. Dig. Dis. 9, 150. BERNABUCCI, U., L. BASIRICO, P. MORERA, N. LACETERA, B. RONCHI, A. NARDONE, 2009: Heat shock modulates adipokines expression in 3T3-L1 adipocytes. J. Mol. Endocrinol. 42/2, 139-147. BOWEN, S.J., K.W. WASHBURN, 1985: Thyroid and adrenal response to heat stress in chickens and quail differing in heat tolerance. Poultry Sci. 64/1,149-154. CHAN, K.H., K.S.L. LAM, O.Y. CHENG, J.S.C. KWAN, P.W.L. HO, K.K.Y. CHENG, A. XU, 2012: Adiponectin is protective against oxidative stress induced cytotoxicity in amyloid-beta neurotoxicity. PloSone. 7/12, e52354. CHEN, B., W.Q. LIAO, N. XU, H. XU, J.Y. WEN, C.A. YU, W. CAMPBELL, 2009: Adiponectin protects against cerebral ischemia–reperfusion injury through anti-inflammatory action. Brain Res. 1273, 129-137. CRENN, P., B. MESSING, L. CYNOBER, 2008: Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin Nutr. 27, 328-339. DE MELO PEREIRA, G.V., B. DE OLIVEIRA COELHO, A.I.M. JÚNIOR, V. THOMAZ-SOCCOL, C.R. SOCCOL, 2018: How to select a probiotic? A review and update of methods and criteria. Biotechnol. Adv. 36, 2060-2076. DEMIRCI, Ş., G. CENNET, 2019: Adipoz Doku ve Adipoz Dokudan Salgılanan Bazı Proteinler. MAKÜ Sağ Bil Enst Derg. 5, 155-179. DIOT, M., M. REVERCHON, C. RAME, P. FROMENT, J.P. BRILLARD, S. BRIÈRE, J. DUPONT, 2015: Expression of adiponectin, chemerin and visfatin in plasma and different tissues during a laying season in turkeys. Reprod. Biol. Endocrinol. 13, 1-14. DÖNMEZ, N., E. KESKIN, 2009: The effects of aflatoxin and glucomannan on coagulation parameters in rabbits. Vet. Arh. 79, 555-560. Europ.Poult.Sci., 84. 2020, ISSN 1612-9199, © Verlag Eugen Ulmer, Stuttgart. DOI: 10.1399/eps.2020.309 15.06.2020 11 / 14 DROCHNER, W., STADERMANN, B., YILDIZ, G., 1993: Einfluss von Pektinen auf Leistung und Estoffwechsel des Geflügels. Übers.Tierernährg. 21, 121-180. DUTTA, D., S. GHOSH, K. PANDIT, P. MUKHOPADHYAY, S. CHOWDHURY, 2012: Leptin and cancer: Pathogenesis and modulation. Indian J Endocrinol Metab. 16, S596–S600. DUTTA, S., P. SENGUPTA, A. BISWAS, 2019: Adiponectin in male reproduction and infertility. Asian Pac. J. Reprod. 8, 244. ERNST, M.C., M. ISSA, K.B. GORALSKI, C.J. SINAL, 2010: Chemerin exacerbates glucose intolerance in mouse models of obesity and diabetes. Endocrinology 151, 1998-2007. ESTIENNE, A., A. BONGRANI, M. REVERCHON, C. RAMÉ, P.H. DUCLUZEAU, P. FROMENT, J. DUPONT, 2019: Involvement of novel adipokines, chemerin, visfatin, resistin and apelin in reproductive functions in normal and pathological conditions in humans and animal models. Int. J. Mol. Sci. 20, 1-45. FOLIGNE, B., F. SÉNÉGAS-BALAS, J.M. ANTOINE, C. CAYUELA, N. ROLF-PEDERSEN, D. BALAS, 2004: Trophic status of the small intestine in young and aged rats: modulation by a yogurt-supplemented diet. Dig. Dis. Sci. 49, 1291-1301. FRÜHBECK, G., V. CATALÁN, A. RODRÍGUEZ, B. RAMÍREZ, S. BECERRIL, J. SALVADOR, J. GÓMEZ-AMBROSI, 2017: Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome. Sci. Rep.7, 1-8. GORALSKI, K.B., A.E. JACKSON, B.T. MCKEOWN, C.J. SINAL, 2019: More than an adipokine: the complex roles of chemerin signaling in cancer. Int. J. Mol. Sci. 20, 1-28. GRADINARU, D., D. MARGINA, C. BORSA, C. IONESCU, M. ILIE, M. COSTACHE, G.I. PRADA, 2017: Adiponectin: possible link between metabolic stress and oxidative stress in the elderly. Aging Clin. Exp. Res. 29, 621-629. HAYS, F.A., A.H. SUMBARDO, 1926: Physical Characters of Eggs in Relation to Hatchability. Poult. Sci. 6, 196-200. HENDRICKS III, G.L., J.A. HADLEY, S.M. KRZYSIK-WALKER, K.S. PRABHU, R. VASILATOS-YOUNKEN, R. RAMACHANDRAN, 2009: Unique profile of chicken adiponectin, a predominantly heavy molecular weight multimer, and relationship to visceral adiposity. Endocrinology 150, 3092-3100. HOSSEINI, E., J. CHERAGHI, S.S. TAHERI, K. TAHERPOUR, K.Z. KAVIANI, L. REZAZADEH, 2013: Thyroid hormones investigation under heat stress in broilers administered with probiotic (BIO-SAF) and prebiotic (BIO-MOS). Europ. J. Exper. Biol. 3, 562-567. INCHAROEN, T., R. CHAROENSOOK, S. ONODA, W. TATRAKOON, S. NUMTHUAM, T. PECHKONG, 2019: The effects of heatkilled lactobacillus plantarum supplementation on growth performance, intestinal morphology, and immunerelated gene expression in broiler chickens. Anim. Feed. Sci. Tech. 257, doi: 10.1016/j.anifeedsci. 2019.114272. KHAJALI, F., S. KARIMI, D. QUJEQ, 2008: Probiotics in drinking water alleviate stress of induced molting in feeddeprived laying hens. Asian-Australas. J. Anim. Sci. 21, 1196-1200. KHALIL, H.A., A.M. HANAFY, H.S.A. ELHALIM, F.A. ATTIA, M.E. MADY, 2008: Effect of fasting periods on productive performance and thyroid hormones levels of Japanese quail exposed to high temperature. Agricult. Research J. Suez Canal Uni. 8, 1-8. KUKLA, M., K. ZWIRSKA-KORCZALA, M. HARTLEB, M. WALUGA, A. CHWIST, M. KAJOR, R. BULDAK, 2010: Serum chemerin and vaspin in non-alcoholic fatty liver disease. Scand. J. Gastroenterol. 45, 235-242. LARBIER, M., B. LECLERCQ, 1994: Nutrition and feeding of poultry. Nottingham (UK), Nottingham University Press, 1994. LEE, H., T.H. TU, B.S. PARK, S. YANG, J.G. KIM, 2019: Adiponectin reverses the hypothalamic microglial inflammation during short-term exposure to fat-rich diet. Int. J. Mol. Sci. 20, 1-12. LIN, H., E. DECUYPERE, J. BUYSE, 2004: Oxidative stress induced by corticosterone administration in broiler chickens (Gallus gallus domesticus): 1. Chronic exposure. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 139, 737-744. Europ.Poult.Sci., 84. 2020, ISSN 1612-9199, © Verlag Eugen Ulmer, Stuttgart. DOI: 10.1399/eps.2020.309 15.06.2020 12 / 14 MEDINA-GÓMEZ, G, 2012: Mitochondria and endocrine function of adipose tissue. Best Pract. Res. Cl. En. 26, 791- 804. MELLOUK, N., C. RAMÉ, A. BARBE, J. GRANDHAYE, P. FROMENT, J. DUPONT, 2018: Chicken is a useful model to investigate the role of adipokines in metabolic and reproductive diseases. Int. J. Endocrinol. V. 2018, https://doi.org/10.1155/2018/4579734. MIN, L., J.B. CHENG, B.L. SHI, H.J. YANG, N. ZHENG, J.Q. WANG, 2015: Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows. J. Zhejiang Univ. Sci. B 16, 541-548. MORERA, P., L. BASIRICÒ, K. HOSODA, U. BERNABUCCI, 2012: Chronic heat stress up-regulates leptin and adiponectin secretion and expression and improves leptin, adiponectin and insulin sensitivity in mice. J. Mol. Endocrinol. 48, 129-138. MOSCHEN, A.R., A. KASER, B. ENRICH, B. MOSHEIMER, M. THEURL, H. NIEDEREGGER, H. TILG, 2007: Visfatin an adipocytokine with proinflammatory and immunomodulating properties. J. Immunol. Res. 178, 1748-1758. MOUNTZOURIS, K.C., P. TSITRSIKOS, I. PALAMIDI, A. ARVANITI, M. MOHNL, G. SCHATZMAYR, K. FEGEROS, 2010: Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poult. Sci. 89, 58-67. MULLUR, R., Y.Y. LIU, G.A. BRENT, 2014:Thyroid hormone regulation of metabolism. Physiol. Rev. 94, 355-382. NIKOLOVA, N., Z. PAVLOVSKI, N. MILOŠEVIĆ, L. PERIĆ, 2007: The quantity of abdominal fat in broiler chicken of different genotypes from fifth to seventh week of age. Biotech. Anim. Husbandry 23, 331-338. OUCHI, N., K. WALSH, 2007: Adiponectin as an anti-inflammatory factor. Clin. Chim. Acta. 380, 24-30. PARK, H.G., S.I. HAN, S.Y. OH, H.S. KANG, 2005: Cellular responses to mild heat stress. Cell. Mol. Life Sci. 62, 10-23. PERIC, L., N. MILOSEVIC, D. ZIKIC, S. BJEDOV, D. CVETKOVIC, S. MARKOV, T. STEINER, 2010: Effects of probiotic and phytogenic products on performance, gut morphology and cecal microflora of broiler chickens. Archiv Tierz. 53, 350-359. PILZ, S., H. MANGGE, B. OBERMAYER-PIETSCH, W. MÄRZ, 2007: Visfatin/pre-B-cell colony-enhancing factor: a protein with various suggested functions. J. Endocrinol. Invest. 30, 138-144. POURVALI-TALATAPPEH, P., E. ALIPOOR, 2019: Visfatin; a potential novel mediator of brown adipose tissue. Obes. Med. 15, 1-2. PRINGSULAKA, O., K. RUEANGYOTCHANTHANA, N. SUWANNASAI, R. WATANAPOKASIN, P. AMNUEYSIT, S. SUNTHORNTHUMMAS, A. RANGSIRUJI, 2015: In vitro screening of lactic acid bacteria for multi-strain probiotics. Livest. Sci. 174, 66-73. ROH, S.G., S.H. SONG, K.C. CHOI, K. KATOH, V. WITTAMER, M. PARMENTIER, S.I. SASAKI, 2007: Chemerin - a new adipokine that modulates adipogenesis via its own receptor. Biochem. Biop. Res. Co. 362, 1013-1018. RONGVAUX, A., R.J. SHEA, M.H. MULKS, D. GIGOT, J. URBAIN, O. LEO, F. ANDRIS, 2002: Pre‐B‐cell colony‐enhancing factor, whose expression is up‐regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur. J. Immunol. 32, 3225-3234. SALEH, K.M., M.B. AL-ZGHOUL, 2019: Effect of acute heat stress on the mRNA levels of cytokines in broiler chickens subjected to embryonic thermal manipulation. Animals 9, 499-501. SCHEJA, L., J. HEEREN, 2019: The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 15, 507-524. SHILOAH, E., H. KANETY, O. COHEN, S. WITZ, A. BUCHS, C. PARIENTE, M.J. RAPOPORT, 2007: Acute psychotic stress is associated with decreased adiponectin serum levels. J. Endocrinol. Invest. 30, 382-387. Europ.Poult.Sci., 84. 2020, ISSN 1612-9199, © Verlag Eugen Ulmer, Stuttgart. DOI: 10.1399/eps.2020.309 15.06.2020 13 / 14 SPIERS, D.E., R.A. MCNABB, F.A. MCNABB, 1974: The development of thermoregulatory ability, heat seeking activities, and thyroid function in hatchling Japanese quail (Coturnix coturnix japonica). J. Comp. Physiol. 89, 159- 174. ST-PIERRE, N.R., B. COBANOV, G. SCHNITKEY, 2003: Economic losses from heat stress by US livestock industries. J. Dairy Sci. 86, E52-E77. TEKCE, E., M. GÜL, 2015: Sıcaklık Stresi Altında Beslenen Etçi Piliçlerde Origanum Syriacum Uçucu Yağının performans Antioksidan Potansiyel Lipid Profili Bağırsak Mikroflorası ve Et Kalitesine Etkisi. Doktora Tezi, AÜ Sağlık Bilimleri Enstitüsü, Erzurum. TSAO, T.S., E. TOMAS, H.E. MURREY, C. HUG, D.H. LEE, N.B. RUDERMAN, H.F. LODISH, 2003: Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity different oligomers activate different signal transduction pathways. J. Biol. Chem. 278, 50810-50817. WANG, G., W.K. KIM, M.A. CLINE, E.R. GILBERT, 2017: Factors affecting adipose tissue development in chickens: A review. Poult. Sci. 96, 3687-3699. WITTAMER, V., J.D. FRANSSEN, M. VULCANO, J.F. MIRJOLET, E. LE POUL, I. MIGEOTTE, A. MANTOVANI, 2003: Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 198, 977-985. XU, Y., X. LAI, Z. LI, X. ZHANG, Q. LUO, 2018: Effect of chronic heat stress on some physiological and immunological parameters in different breed of broilers. Poult. Sci. 97, 4073-4082. YILMAZ, Y., O. YONAL, R. KURT, Y.O. ALAHDAB, F. EREN, O. OZDOGAN, E. AVSAR, 2011: Serum levels of omentin, chemerin and adipsin in patients with biopsy-proven nonalcoholic fatty liver disease. Scand. J. Gastroenterol. 46, 91-97. ZABEL, B.A., A.M. SILVERIO, E.C. BUTCHER, 2005: Chemokine-like receptor 1 expression and chemerin-directed chemotaxis distinguish plasmacytoid from myeloid dendritic cells in human blood. J. Immunol. Res. 174, 244- 251. ZHOU, Z., H. CHEN, H. JU, M. SUN, 2018: Circulating chemerin levels and gestational diabetes mellitus: A systematic review and meta-analysis. Lipids Health Dis. 17, 169-180. ZHANG, R, M. ZHOU, Y. TU, N. ZHANG, K. DENG, T. MA, Q. DIAO, 2016: Effect of oral administration of probiotics on growth performance, apparent nutrient digestibility and stress‐related indicators in holstein calves. J Anim. Physiol. An. N. 100, 33-38. Europ.Poult.Sci., 84. 2020, ISSN 1612-9199, © Verlag Eugen Ulmer, Stuttgart. DOI: 10.1399/eps.2020.309